• Title/Summary/Keyword: circular pattern vector algorithm

Search Result 11, Processing Time 0.022 seconds

Dominant Color Transform and Circular Pattern Vector: Applications to Traffic Sign Detection and Symbol Recognition

  • An, Jung-Hak;Park, Tae-Young
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.73-79
    • /
    • 1998
  • In this paper, a new traffic sign detection algorithm.. and a symbol recognition algorithm are proposed. For traffic sign detection, a dominant color transform is introduced, which serves as a tool of highlighting a dominant primary color, while discarding the other two primary colors. For symbol recognition, the curvilinear shape distribution on a circle centered on the centroid of symbol, called a circular pattern vector, is used as a spatial feature of symbol. The circular pattern vector is invariant to scaling, translation, and rotation. As simulation results, the effectiveness of traffic sign detection and recognition algorithms are confirmed, and it is shown that group of circular patter vectors based on concentric circles is more effective than circular pattern vector of a single circle for a given equivalent number of elements of vectors.

  • PDF

The Study on Dynamic Images Processing for Finger Languages (지화 인식을 위한 동영상 처리에 관한 연구)

  • Kang, Min-Ji;Choi, Eun-Sook;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, we realized a system that receives the dynamic images of finger languages, which is the method of intention transmission of the hearing disabled person, using the white and black CCD camera, and that recognizes the images and converts them to the editable text document. We use the afterimage to draw a sharp line between indistinct images and clear images from a series of inputted images, and get the character alphabet from the away of continuous images and output the accomplished character to the word editor by applying the automata theory. After the system removes the varied wrist part from the data of clean image, it gets the controid point of hand by the maximum circular movement method and recognizes the hand that is necessary to analyze the finger languages by applying the circular pattern vector algorithm. The system abstracts the characteristic vectors of the hand using the distance spectrum from the center of the hand and it compares the characteristic vector of inputted pattern from the standard pattern by applying the fuzzy inference and recognizes the movement of finger languages.

Analysis of DOA Estimation and Adaptive Beam-forming of MIMO between Linear-circular Array Antennas (선형-원형배열 안테나에 따른 MIMO의 DOA 추정과 적응 빔성형 분석)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2777-2784
    • /
    • 2011
  • In this paper, DOA(direction of arrival) of multiple incident signals received from linear array antenna and circular array antenna, which is based on nonparametric estimation algorithm, and adaptive beam-forming algorithm are studied and analyzed. In nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Especially, the discrimination ability of DOA and the adaptive beam-forming ability according to antenna array methods and the number of array elements are compared and considered.

Cursor Control by the Finger Moton Using Circular Pattern Vector Algorithm (원형 패턴 벡터 알고리즘을 이용한 손가락 이동에 의한 커서제어)

  • 정향영;신일식;손영선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.487-490
    • /
    • 2001
  • In this paper, we realize a system that moves a cursor with a finger using the circular pattern vector algorithm that in one of the image analysis algorithms. To apply this algorithm, we use central point of the biggest circle among the various circles that recognize the image of the hand , and find out the pointing finger by looking for the distance of the outline of the hand from the central point. The horizontal direction of the cursor on the display is controlled by converting the direction of the pointing finger to the analysis of the plane corrdinate. Because of setting up only one camera of the upper, the middle and the lower discretely. On account of the discrete movement of the cursor of the vertical direction, we move th cursor to the objective, which the user wants. by expanding the local are to the whole area.

  • PDF

Documentation of Printed Hangul Images of the Selected Area by Finger Movement (손가락 이동에 의해 선택된 영역의 인쇄체 한글 영상 문서화)

  • Beak, Seung-Bok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.306-310
    • /
    • 2002
  • In this paper, we realized a system that converts the Korean alphabet (Hangul) images, which are in any domain that is formed by the finger movement on the Hangul document, to the editable characters and then outputs them to the word editor. The domain of hand is separated from the sphere of document in the pre-process step of image. The centroid point of hand is drawn by the maximum circular movement method. After the system recognizes the hand with the circular pattern vector algorithm, finds out the position of finger by the distance spectrum and then draws out the sphere of selected character image by the finger movement to divide the characters into character units by applying the histogram between the Hangul characters. We standardized the characters of various sizes. We used the circular pattern vector algorithm that grafts on the fuzzy inference to divert the character images of the domain, which user wants, to the editable characters by comparing the characteristic vectors between the standard pattern character and the inputted character and by recognizing the character.

The Performance Analysis of Beamforming Algorithm for Anti-Spoofing

  • Choi, Yun Sub;Lee, Sun Yong;Park, Chansik;Ahn, Byoung Sun;Won, Hyun Hee;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The present paper shows that beamforming algorithm such as Minimum Variance Distortionless Response (MVDR) based on array antenna signal processing can have not only anti-jamming but also anti-spoofing characteristics. A beam pattern due to the beamforming algorithm strengthens received signal power as it is formed in the incident direction of desired signal. During the process, the effect of unnecessary signals such as spoofing signals can be reduced because the beam pattern reduces received signal power in the incident directions excluding the beam pattern-directed direction. In order to analyze the anti-spoofing effect due to the beamforming algorithm, a software-based simulation environment was configured. An arbitrary error was applied between incident direction of Global Positioning System (GPS) satellite signal and steering vector direction of the beamforming algorithm to analyze the received signal power and required conditions were provided to see the anti-spoofing effect due to the beamforming algorithm. The used antenna was 7-element planar circular array and beam patterns were formed through the MVDR algorithm.

Development of an Effective Walking System for a Hexapod Robot on Uneven Terrain (오프로드 환경에서 효율적인 6족 로봇 보행 시스템 개발)

  • Kim, Jun Woo;Lee, Gi Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1152-1159
    • /
    • 2013
  • This paper proposes an effective walking system for a hexapod robot on uneven terrain. To overcome the deficiencies of two-pair walking systems, which are effective on even terrain, the use of only three legs changes the steps required for movement. The proposed system receives feedback data from switches attached to the bottom of the legs and gyro sensor to carry out stable walking using the Bezier curve algorithm. From the coordinates of the Bezier curve, which guarantees the circular motion of legs, the motor's angle value can be obtained using inverse kinematics. The angle values are sent to each motor though RS-485 communication. If a switch is pushed by the surface during navigation in the Bezier curve pattern, the robot is designed to change its circular course. Through the changed course, each leg can be located on an optimal surface and the wobble phenomenon is reduced by using a normal vector algorithm. The simulation and experiment results show the efficiency of the proposed algorithm.

A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector (명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식)

  • Lee, Eung-Ju;Seok, Yeong-Su
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, we propose the react-time car license plate recognition algorithm using intensity variation and geometric pattern vector. Generally, difference of car license plate region between character and background is more noticeable than other regions. And also, car license plate region usually shows high density values as well as constant intensity variations. Based on these characteristics, we first extract car license plate region using intensity variations. Secondly, lightness compensation process is performed on the considerably dark and brightness input images to acquire constant extraction efficiency. In the proposed recognition step, we first pre-process noise reduction and thinning steps. And also, we use geometric pattern vector to extract features which independent on the size, translation, and rotation of input values. In the experimental results, the proposed method shows better computation times than conventional circular pattern vector and better extraction results regardless of irregular environment lighting conditions as well as noise, size, and location of plate.

The study of improving the performance of lower direction finding ability due to the interfered phase difference of circular array Antennas (원형배열안테나의 위상간섭에 의한 방향탐지 성능저하 개선연구)

  • Chung, Jae-Woo;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.535-539
    • /
    • 2010
  • This paper include to study DoA(Direction of Arrival) for radio collection and monitoring system. The direction finding calculated by applying the CVDF (Correlation Vector Direction Finding) algorithm for the five circular dipole antenna over V / UHF band. To improve the accuracy of direction finding by applying CVDF algorithm needs to obtain ideal phase difference each antennas. However, a circular array antenna phase difference pattern may be distorted on a specific frequency band or to particular direction. The effect of installing each array antennas circularly and the effect of the interference of center pole (located in the center of a circular array antenna mount) may make the distortion of phase pattern. If you use an active antenna instead of passive antenna to obtain good sensitivity, you would measure the more distortion. This paper propose how to change combination of antennas to measure the phase in real-time and how to use antenna beam patterns for minimizing the degradation phenomena at applying simple CVDF algorithm and increasing the direction finding capability.

  • PDF

Cursor Control by the Finger Motion Using Circular Pattern Vector Algorithm (원형 패턴 벡터 알고리즘을 이용한 손가락 이동에 의한 커서제어)

  • 정향영;신일식;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.173-176
    • /
    • 2001
  • 본 논문은 영상 해석 알고리즘의 하나인 원형 패턴 벡터 알고리즘을 이용하여 손가락으로 커서를 제어하는 시스템을 구현하였다. 이 알고리즘을 적용하기 위하여 영상에서 손 영역에만 해당하는 최대 원을 여러 개 그린 후 가장 큰 원의 중심점을 무게 중심점으로 사용하였으며, 무게 중심점에서 손의 외곽까지의 거리를 구하여 가리키는 손가락을 찾도록 하였다. 화면상의 커서의 수평 방향은 가리키는 손가락 방향을 이용하여 평면 좌표로 해석하여 제어하였고, 수직 방향은 모니터 중앙 상단에 한대의 카메라를 사용하였기 때문에 손가락 길이를 이용하여 불연속적으로 상-중-하의 세 영역으로 제어하였다. 수직 방향의 커서이동이 불연속적이기 때문에, 구축한 인터페이스 화면의 범위를 축소한 후 축소된 범위를 전체 화면으로 확대해 나감으로써 사용자가 원하는 목표지점으로 커서를 이동시킬 수 있다.

  • PDF