• Title/Summary/Keyword: circular foundation

Search Result 137, Processing Time 0.022 seconds

Optimal design of a wind turbine supporting system accounting for soil-structure interaction

  • Ali I. Karakas;Ayse T. Daloglua
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.273-285
    • /
    • 2023
  • This study examines how the interaction between soil and a wind turbine's supporting system affects the optimal design. The supporting system resting on an elastic soil foundation consists of a steel conical tower and a concrete circular raft foundation, and it is subjected to wind loads. The material cost of the supporting system is aimed to be minimized employing various metaheuristic optimization algorithms including teaching-learning based optimization (TLBO). To include the influence of the soil in the optimization process, modified Vlasov and Gazetas elastic soil models are integrated into the optimization algorithms using the application programing interface (API) feature of the structural analysis program providing two-way data flow. As far as the optimal designs are considered, the best minimum cost design is achieved for the TLBO algorithm, and the modified Vlasov model makes the design economical compared with the simple Gazetas and infinitely rigid soil models. Especially, the optimum design dimensions of the raft foundation extremely reduce when the Vlasov realistic soil reactions are included in the optimum analysis. Additionally, as the designated design wind speed is decreased, the beneficial impact of soil interaction on the optimum material cost diminishes.

Reduction Factor for the Site Coefficient of a Building built on a Poor-backfilled Embedded Foundation (뒷채움이 부실한 묻힌기초 위에 세워진 건축물의 지반증폭계수에 대한 저감계수)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this paper, the reduction factors to calculate the site coefficients of an embedded foundation are estimated, considering the effect of a poor backfill for the seismic design of a building built on an embedded foundation. This is determined by utilizing in-house finite element software, P3DASS, which has the capability of horizontal pseudo 3D seismic analysis with nonlinear soil. The 30m thick soil on stiff rock was assumed to be homogeneous, elastic, viscous and isotropic, and equivalent circular rigid foundations with radii of 10-70m were assumed to be embedded 0, 10, 20, and 30 m in the soil. Seismic analyses were performed with 7 bedrock earthquake records de-convoluted from the outcrop records; the scaling of the peak ground accelerations were to 0.1 g. The study results show that the site coefficients of a poor-backfilled foundation are gradually reduced as the foundation embedment ratio increases, except in the case of a small foundation embedded deeply in the weak soft soil. In addition, it was found that the deviation of the site coefficients due to the foundation size was not significant. Therefore, the typical reduction factors of an embedded foundation with poor backfill are proposed in terms of the shear wave velocity and site class. This is in order to find the site coefficients of an embedded foundation by multiplying the reduction factor by a site coefficient of a surface foundation specified in the design code. They can then be interpolated to determine the intermediate shear wave velocity.

Stress Distribution under a Geogrid-Reinforced Soil Pad (지오그리드로 보강한 성토지반의 응력분포)

  • 이규진;신방웅;신은철
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.87-91
    • /
    • 2001
  • 얕은 기초의 침하는 기초에 가해지는 상재 하중의 지반에 전달될 때 분포되는 응력의 특성과 크기에 관련되어 일어난다. 일반적으로 지반의 보강재로 사용되는 지오그리드로 두께가 작은 토체를 보강하면 지중에 전달되는 응력을 재분포시켜 감소시킨다. 이 논문에서는 현장시험을 통하여 여러 층의 지오그리드로 토체를 보강시 토체 상부에 가해지는 원형 등분포 하중하에서 토체의 응력 분포를 측정하였다. 인천국제 공항 건설 현장의 준설 매립 구간에서 행하여진 이 시험을 통하여, 지오그리드로 보강된 토체의 하중 분포는 기초에 가해지는 하중 강도와, 보강재 포설층수, 토체의 두께의 함수로 나타낼 수 있다.

  • PDF

Bearing Capacity Characteristics of Shallow Foundation by Three Dimension FEM (3차원 유한요소해석에 의한 얕은 기초의 지지력 특성)

  • Park, Choon-Sik;Kim, Jong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to understand the characteristics of bearing capacity of shallow foundation on the grounds. We made a comparative study of existing bearing capacity theory, based on the three-dimensional finite element analysis with a variety of conditions such as ground condition, foundation scale and foundation shape. In the finite element analysis, the ultimate bearing capacity showed a gradual convergence in the form of exponential function or logarithm function according to the foundation scale. Although the shear strength increased, the bearing capacity tended not to increase but change linearly. In the results of comparative study of existing bearing capacity theory, bearing capacity ratio ($q_{u(FEA)}/q_{u(theory)}$) of pure sand has the outcome closest to those of the Terzaghi method. Pure clay turned out to be about 0.4~0.6 while normal soil was changed in a range of 0.3~1.3. As shear strength is increased, the results turned out to be less than 1.0. Bearing capacity ratio ($q_u/q_{u(1.0)}$), normalized at 1.0m bearing capacity, was about 35%, 15% and 5% of theoretical formula under the condition of ${\phi}=25^{\circ}$, $30^{\circ}$ and $35^{\circ}$ of pure sand; no scale effect was found with pure clay and the normal soil with lower soil strength level showed less than 10% of the theoretical formula of pure sand. Bearing capacity ratio of each case, in accordance with, the shear strength increase, was largely influenced by the internal friction angle. Shape factor of bearing capacity ratios classified by foundation shapes have different results according to the shapes; the shape factor of circular foundation is 1.50, square foundation is 1.30, rectangular and continuous foundations are 1.1~1.0.

Scour Protection Effect around the Monopile Foundation (모노파일 기초 주변의 세굴방지 효과에 관한 연구)

  • Kim, Seon Min;Kim, Jong Kyu;Kim, Yong Kwan;Seo, Seong Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2017
  • In this research, a three-dimensional Computational Fluid Dynamics(CFD), scour characteristics around monopile was grasped and the effect of circular ring type scour protection on reducing protection was assessed. When Torsethaugen(1975) found that the scour area and its depth were coincided quantitatively On the ground of previous findings, after scour was assessed in terms of sea current velocity, we also found that the tendency of maximum scour depth and its width were increased as the sea current velocity was increased. The experiments were performed by attaching ring-circular typed scour protection under the bottom in order to reducing scour around the constructs of monopile type and showed reduced scour approximately by 68.5%. In addition, there were reduction of downward flow and bottom velocities, suggesting that scour protection reduce the effect of downward flow on scour.

Free Vibrations of Curved Members Resting on Elastic Foundation with Continuity Effect (연속성을 갖는 탄성지반 위에 놓인 곡선부재의 자유진동)

  • 이병구;박광규;오상진;진태기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.371-379
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved members resting on elastic foundations with continuity effect. Taking into account the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the Pasternak foundation model is considered as the elastic foundation with continuity effect. The differential equations are solved numerically to calculate natural frequencies and mode shapes. The experiments were performed in which the natural frequencies of such curved beams in laboratorial scale were measured and these results agree quite well with the present numerical studies. In numerical examples, the circular, parabolic, sinusoidal and elliptic curved members with the hinged-hinged, hinged-clamped and clamped end constraints are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Automated Measurement Method for Construction Errors of Reinforced Concrete Pile Foundation Using a Drones (드론을 활용한 철근콘크리트 말뚝기초 시공 오차 자동화 측정 방법)

  • Seong, Hyeonwoo;Kim, Jinho;Kang, HyunWook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.45-53
    • /
    • 2022
  • The purpose of this study is to present a model for analyzing construction errors of reinforced concrete pile foundations using drones. First, a drone is used to obtain an aerial image of the construction site, and an orthomosaic image is generated based on those images. Then, the circular pile foundation is automatically recognized from the orthomosaic image by using the Hough transform circle detection method. Finally, the distance is calculated based on the the center point of the reinforced concrete pile foundation in the overlapped data. As a case study, the proposed concrete concrete pile foundation construction quality control model was applied to the real construction site in Incheon to evaluate the proposed model.

Reduction Factor of the Site Coefficient due to the Foundation Embedment in the Soft Soil Layer for the Seismic Analysis of a Building (건축물의 지진해석을 위한 연약지반에 묻힌 기초로 인한 지반증폭계수에 대한 저감계수)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.1-15
    • /
    • 2010
  • In this study, the reduction factor of the code-defined site coefficient due to the embedment of a foundation was estimated for the seismic analysis of a building built on a soft soil site. This was done by utilizing the in-house finite element software P3DASS, which has the capability of pseudo 3D seismic analysis with nonlinear soil layers. A 30m thick soft soil site laid on the rock was assumed to be homogeneous, elastic, viscous and isotropic, and equivalent circular rigid foundations with radii of 10-70m were considered to be embedded at 0, 10, 20 and 30m in the soil layer. Seismic analyses were performed with 7 bedrock earthquake records deconvoluted from the outcrop records of which the effective ground acceleration was scaled to 0.1g. The study results showed that the site coefficients are gradually reduced except in the case of a small foundation embedded deeply in the weak soil layer, and it was estimated that the deviation of the site coefficients due to the foundation size was not significant. The standard reduction factor due to the foundation embedment were calculated adding the standard deviation to the average of 5 reduction factors calculated for 5 different foundation radii. Standard reduction factors for the site amplification factor were proposed for the practical amplification and the codes of KBC, etc., in accordance with the average shear wave velocity of the site, and the site class.

Evaluation of Vertical Bearing Capacity for Bucket and Shallow Foundations Installed in Sand (사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정)

  • Park, Jeongseon;Park, Duhee;Jee, Sunghyun;Kim, Dongjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • The vertical bearing capacity of a bucket foundation installed in sand can be calculated as sum of the skin friction and end bearing capacity. However, the current design equations are not considering the non-associated flow characteristics of sand and the reduction in the skin friction and increase in the end bearing capacity when the vertical load is applied. In this study, we perform two-dimensional axisymmetric finite element analyses following non-associated flow rule and calculate the vertical bearing capacity of circular bucket foundation of various sizes installed in sand of different friction angles. After calculating the skin friction and end bearing force at the ultimate state, design equations are derived for each. The skin friction of bucket foundation is shown significantly small compared to the end bearing capacity. Considering the difference with the available design equation for piles, it is recommended that the equation for piles is used for the bucket foundation. A new shape-depth factor ($s_q{\cdot}d_q$) for bucket foundation is recommended which also accounts for the increment of the end bearing capacity due to skin friction. Additionally, the shape and depth factor of embedded foundation proposed from the associated flow rule can overestimate the bearing capacity in sand, so it is more adequate to use the shape-depth factor proposed in this study.

Bearing Capacity Evaluation of Hybrid Suction Bucket Foundations on Clay Under Horizontal Loads Using a Centrifuge (원심모형실험을 활용한 점토지반에 설치된 하이브리드 석션 버켓기초의 수평방향 지지력 평가)

  • Kim, Jae-Hyun;Lee, Cheol-Ju;Shin, Hee Jeong;Kim, Seong Hwan;Goo, Jeong Min;Jung, Chung Yeol;Jeon, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.61-73
    • /
    • 2023
  • Suction buckets are feasible options for offshore foundations to support subsea structures in deep water, enabling suction-induced installation by pumps. Recently, hybrid suction bucket foundations that combine single or multiple suction buckets with a mat foundation have been considered. The foundations effectively increase the load capacity while reducing construction costs. However, there is still insufficient experimental validation of hybrid suction bucket foundations regarding their bearing capacity. Furthermore, research on the horizontal load capacity under low vertical and moment loads is inadequate. In this study, we investigate the feasibility of using a hybrid suction bucket foundation for subsea installations in clay. We considered two types of hybrid suction bucket foundations: a circular mat with a single suction bucket and a square mat with multiple buckets. Centrifuge tests were performed to understand the hybrid suction bucket foundation characteristics under horizontal loads and their corresponding bearing capacity. Particularly, we verified the effect of the mat foundation and bucket embedment depth on the horizontal bearing mechanism and capacities. Results confirmed that the hybrid suction bucket foundation outperforms the single suction bucket.