• Title/Summary/Keyword: circle motion

Search Result 78, Processing Time 0.026 seconds

The Comparison of Sphere Fitting Methods for Estimating the Center of Rotation on a Human Joint (인체관절의 회전중심 추정을 위한 구적합법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • The methods of fitting a circle to measured data, geometric fit and algebraic fit, have been studied profoundly in various areas of science. However, they have not been applied exactly to a biomechanics discipline for locating the center of rotation of a human joint. The purpose of this study was to generalize the methods to fitting spheres to the points in 3-dimension, and to estimate the center of rotation of a hip joint by three of geometric fit methods(Levenberg-Marquardt, Landau, and Sp$\ddot{a}$th) and four of algebraic fit methods(Delogne-K${\aa}$sa, Pratt, Taubin, and Hyper). 1000 times of simulation experiments for flexion/extension and ad/abduction at an artificial hip joint with four levels of range of motion(10, 15, 30, and $60^{\circ}$) and three levels of angular velocity(30, 60, and $90^{\circ}$/s) were executed to analyze the responses of the estimated center of rotation. The results showed that the Sp$\ddot{a}$th estimate was very sensitive to the marker near the center of rotation. The bias of Delogne-K${\aa}$sa estimate existed in an even larger range of motion. The Levenberg-Marquardt algorithm of geometric fit and the Pratt of algebraic fit showed the best results. The combination of two methods, using the Pratt's estimate as initial values of the Levenberg-Marquardt algorithm, could be a candidate of more valid estimator.

A Study on the Manoeuvrability of 1/42.0 Scaled KCS (1/42.0 KCS 모형선의 조종성능에 관한 연구)

  • Yun, Kunhang;Kim, Dong Jin;Yeon, SeongMo;Kim, Yoo-Chul;Kim, Yeon Gyu;Yang, Kyung-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.262-270
    • /
    • 2022
  • The emergence of new concept ships, such as autonomous ships, has drawn much attention on the manoeuvrability of ships because of the safe navigation and operation of ships. Although the manoeuvrability of KRISO Container Ship(KCS) has been frequently reported, there have been few documents of representative manoeuvre cases conducted in various methods by one institute. This paper presents the manoeuvrability of the ship in 1/42.0 model scale by 3 methods: free running model tests, horizontal planar motion mechanism tests, and computational fluid dynamics analysis. KRISO reports KCS manoeuvre data: 35° turning circle tests and 20/20(10/10) zigzag manoeuvring tests. In addition, a simple formula for integrating and comparing manoeuvre indices, Manoeuvrability Comparing Simple Index(MCSI), is proposed.

Aesthetic Category in Korean Traditional Dance, Mat & Meot (한국춤의 미적범주, 맛과 멋)

  • Ko, Kyung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.175-187
    • /
    • 2012
  • The purpose of this study is to investigate the mechanism on how the aesthetic consciousness of "Mat" and "Meot" of Korean dance is realized with the analysis of aesthetic meaning and value found in the aesthetic experience of Korean dance, and also the aesthetic concept and consciousness of Korean Studies. First, "the aesthetic consciousness of endless life theory" is from the curved motion, which is one of the basic principle of Korean dance, and is to be sublimated to the aesthetic consciousness of "Mat" and "Meot". The life theory of the Korean dance is to be cleary realized by the curved movement aiming the Circle, which is the important principle of movement for feeling aesthetic consciousness of "Mat" and "Meot". But, the Korean dance movement has been affected to follow the Straight motion frequently in recent days rather than the Curved motion due to the influence of the Western style movement. This makes difficult to find aesthetical sense of "Mat" and "Meot". So, it is very crucial to keep and improve the Curved motion in the Korean dance for protecting and developing aesthetic consciousness of "Mat" and "Meot", the unique feature of the Korean dance. And the continuos effort and plan of Korean dancer is also needed to make the Mind and the Body coexist each other. Furthermore, the research on this aesthetic consciousness of "Mat" and "Meot" of the Korean dance should be kept going.

Design and Test of Elliptical Vibration Assisted Cutting Tool Post for Ultra-precision Machines (초정밀가공기용 타원 진동절삭 공구대의 설계 및 성능실험)

  • 이대희;김호상;김의중;오창진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.261-264
    • /
    • 2004
  • This paper presents the design and test of elliptical vibration assisted cutting tool post. It is actuated by two piezoelectric actuators which are connected to the moving part through the elastic hinge with its role of imposing the preliminary pressures. These two actuators are located at right angles so that the resulting tool tip moves like a two-dimensional ellipse. Also, the tool post is activated within the region of linear actuation in order to overcome the distorted elliptical motion. For the precise measurement of the displacement of the tool tip, three-dimensional experimental apparatus was designed and the strokes of the tool post in major and minor axes were measured. The results show that the tool post can produce the variety of vibration locus from a circle with a radius of 5 ${\mu}{\textrm}{m}$ to an ellipse with a major axis, a =10 ${\mu}{\textrm}{m}$, and a minor axis, b =2.5 ${\mu}{\textrm}{m}$

  • PDF

Design of Gerotor with Pin-tooth Inner Rotor (핀치형 내부로터의 제로터 설계)

  • Lee, Sung-chul
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.64-67
    • /
    • 2020
  • In the conventional gerotor design, the circular arc tooth of the outer rotor is first introduced, and then the inner rotor profile is generated by simulating the outer rotor motion while the inner rotor is fixed. The profile generation of tooth meshing exhibits relativity; therefore, the outer rotor profile can be generated by the movement of the inner rotor. In this study, we propose the design of a gerotor with a pin-tooth inner rotor. First, the pin-tooth inner rotor is devised, and then the outer rotor profile is generated. The profile of the inner rotor is simply composed of equally arranged pins along a circle. The root of the inner rotor is designed as a conjugated arc of two pins. The trajectory of the pin center is obtained by the inner rotor operation, and then the outer rotor profile is determined as a parallel curve of the trajectory. In this gerotor design, the inner rotor has a simple configuration, and contact occurs between the pin parts of the inner rotor and the whole profile of the outer rotor. This affects the material selection and machining process. The pin tooth can be used to design the outer and inner rotors, enabling a double gerotor mechanism corresponding to a planetary gear system.

Coupled Dynamic Simulation of a Tug-Towline-Towed Barge based on the Multiple Element Model of Towline

  • Yoon, Hyeon Kyu;Kim, Yeon Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.9
    • /
    • pp.707-714
    • /
    • 2012
  • Recently, tug boats are widely used for towing a barge which transports building materials, a large block of a ship, offshore crane, and so on. In order to simulate the dynamics of the coupled towing system correctly, the dynamics of the towline should be well modeled. In this paper, the towline was modeled as the multiple finite elements, and each element was assumed as a rigid cylinder which moves in five degrees of freedom except roll. The external tension and its moment acting on each element of the towline were modeled depending on the position vector's direction. Tugboat's motion was simulated in six degrees of freedom where wave and current effects were included, and towed barge was assumed to move in the horizontal plane only. In order to confirm the mathematical models of the coupled towing systems, standard maneuvering trials such as course changing maneuver, turning circle test and zig-zag test were simulated. In addition, the same trials were simulated when the external disturbances like wave and current exist. As the result, it is supposed that the results might be qualitatively reasonable.

Dynamic Boundary Tracking Control in Active Sensor Network (동적 센서네트워크에서의 유동적 경계선 추종 제어)

  • Jang, Seyong;Lee, Giroung;Song, Bongsob;Chwa, Dongkyoung;Hong, Sukkyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1628-1635
    • /
    • 2008
  • In this paper, the motion coordination algorithm of mobile agents in active sensor network is proposed to track the dynamic boundary for environmental monitoring. While most of dynamic boundary tracking algorithms in the literature were studied under the assumption that the boundary and/or its evolving rate is known a priori, the proposed algorithm is assumed that the individual active agent can measure the state of environment locally without any information of the boundary. When the boundary is evolving dynamically, the formation of active agents is designed to achieve two objectives. One is to track boundary layer based on the measured information and a small deviation. The other is to maintain a uniform distance between adjacent agents. The algorithm structure based on a state diagram is proposed to achieve these two objectives. Finally, it will be shown in the simulations that all given agents converge to a desired boundary layer and maintain a formation along the boundary. (e.g., a circle, an ellipse, a triangle and a rectangle)

The effect of neuromuscular electrical stimulation on the spasticity of elbow flexor in stroke patients (신경근 전기자극이 뇌졸중 환자의 주관절 굴곡근 경직에 미치는 영향)

  • Jeong Byoung-Ok;Kwon Young-shil;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.3
    • /
    • pp.89-96
    • /
    • 1999
  • The purpose of this study was to examine the effects of neuromuscular electrical stimulation(NMES) on the spasticity of elbow flexor. Ten spastic hemiplegia who have been at EUL-JI medical college hospital in Taejon with age range of 35 to 70 years$(56.8\pm9.5)$, were participated in this study. The subjects (5male, 5female) took neuromuscular electrical stimulation therapy on the triceps of the affected elbow. To compare the effect of the treatment, the grade of spasticity of affected elbow flexor was measured at pre-treatment and the end of each weeks using modified Ashworth scale. Then, the range of extension of the affected elbow was measured at pre-treatmen and the end of each weeks using full circle goniometer. The data were analyzed with ANOVA to determine significant differences with the passage of time. The results were as follows: 1. ANOVA test showed significant differences in reducing spasticity of NMES group with the passage of time (p<.01). 2. ANOVA test showed significant differences in increasing range of motion with the passage of time of NMES group(p<.01). The neuromuscular electrical stimulation is a effective method to reduce the spasticity of elbow flexor.

  • PDF

A Simplified Horizontal Maneuvering Model of a RIB-Type Target Ship (RIB형 표적정의 수평면 조종운동 간략모델)

  • Yoon, Hyeon-Kyu;Yeo, Dong-Jin;Fang, Tae-Hyun;Yoon, Kun-Hang;Lee, Chang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.572-578
    • /
    • 2007
  • A Rigid Inflatable Boat (RIB) is now widely used for commercial and military purpose. In this paper, it is supposed that seven-meter-class RIB be used as an unmanned target ship for naval training. In order to develop many tactical maneuvering patterns of a target ship, a simple horizontal maneuvering model of a RIB is needed. Therefore, models of speed and yaw rate are constructed as the first-order differential equations based on Lewandowski#s empirical formula for steady turning circle diameter of a conventional planning hull. Some parameters in the models are determined using the results of sea trial tests. Finally, proposed models are validated through the comparison of the simulation result with the sea trial result for a specific scenario. Even though a simple model does not represent the horizontal motion of a RIB precisely, however, it can be used enough to develop tactical trajectory patterns.

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.