• Title/Summary/Keyword: circle fit

Search Result 24, Processing Time 0.02 seconds

A Comparative Study on the Effective Surface Resistance of High-$T_c$ Superconductor Films as Measured by Using the S-parameter Circle-fit and the Lorentzian-fit Methods (S-parameter Circle-fit과 Lorentzian-fit 방법으로 측정된 고온초전도체 박막의 유효표면저항 비교)

  • Kim, Min-Jeong;Jung, Ho-Sang;Lee, J.H.;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.146-151
    • /
    • 2008
  • Measurements of surface resistance ($R_s$) of high temperature superconductor (HTS) films with accuracy are essential for microwave applications of HTS materials. In using the dielectric resonator method, uncertainties in the unloaded quality factor of the resonator cause significant errors in the measured $R_s$ of HTS films. We compare the Rs values of $YBa_2Cu_3O_{7-{\delta}}$ films calculated from the $Q_0$ as determined from the Lorentzian fit with that from the $Q_0$ as determined from the S-parameter circle-fit at temperatures between 15 K and 77 K. The two sets of values appeared to differ by 5%, 7%, 6%, and 11% at temperatures of 15, 60, 70, and 77 K, respectively, from each other, implying that careful error analysis needs to be performed in obtaining the $R_s$ of HTS films by using the Lorentzian-fit method, with the ones determined from the S-parameter circle-fit used as the reference.

  • PDF

Comparative Study for the Unloaded Quality Factors of High-Tc Superconductor-Dielectric Resonators Measured by Using S-parameter Circle-fit Method and Lorentzian-fit Method (S-parameter circle fit 방법과 Lorentzian fit 방법으로 측정된 고온초전도 유전체 공진기의 Unloaded Quality Factor 비교)

  • Kim, M.J.;Lee, J.H.;Park, E.K.;Yang, W.I.;Jung, H.S.;Choi, Y.O.;Lee, S.Y.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.143-151
    • /
    • 2007
  • Accurate measurements of the microwave surface resistance (Rs) of high temperature superconductor (HTS) films are important with regard to applications of HTS materials for wireless communications. As the surface resistance values of HTS films are usually extracted from the measured unloaded quality factor ($Q_0$) of resonators made of HTS films, it is essential to measure the resonator $Q_0$ with accuracy. The $TE_{011}\;mode\;Q_0$ of sapphire resonators with the endplates made of $YBa_2Cu_3O_{7-{\delta}}$(YBCO) film on $LaAlO_3$ is measured by using the S-parameter circle-fit method at a frequency of about 19.6 GHz and temperatures of 30 K to 90 K, which is compared with the measured values by using the Lorentzian-fit method. Good agreements are found between the two sets of $Q_0$ values measured by using the two different methods whether the resonator is used in a weak-coupling scheme or a strong-coupling scheme, showing reliability of both methods fur measuring the resonator $Q_0$ accurately. The $Q_0$ of sapphire resonators with a gap between the top plate and the rest of the resonator is also discussed.

  • PDF

GEOMETRIC FITTING OF CIRCLES

  • Kim, Ik-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.983-994
    • /
    • 2000
  • We consider the problem of determining the circle of best fit to a set of data points in the plane. In [1] and [2] several algorithms already have been given for fitting a circle in least squares sense of minimizing the geometric distances to the given data points. In this paper we present another new descent algorithm which computes a parametric represented circle in order to minimize the sum of the squares of the distances to the given points. For any choice of starting values our algorithm has the advantage of ensuring convergence to a local minimum. Numerical examples are given.

A Study on the Movements of Quality Circle Activities in Japanese Companies (일본기업의 분임조활동 동향에 관한 연구 -F사의 FIT활동을 중심으로-)

  • Yoo, Han-Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.4
    • /
    • pp.90-99
    • /
    • 1995
  • Quality circle activities as an important part of TQM have greatly contributed to the development of Japanese industry. Recently, however, there are severe criticisms about quality circle activities in Japan. Quality circle activities must be reformed in accordance with new world-wide industrial circumstances. In this respect, several Japanese companies are trying to change the method for implementing their circle activities. In this case study, I have investigated one of these movements which occurs in several Japanese companies. It allows us to gain an insight into the way we might go here in Korea.

  • PDF

Analytical Study on Inter-Cell Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

  • Gu, Hangyu;Li, Shuangchun;Havyarimana, Vincent;Wang, Dong;Xiao, Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2029-2043
    • /
    • 2018
  • In this paper, we propose a novel inter-cell handover approach from a new perspective in dense Heterogeneous and Small Cell Networks (HetSNets). We first devise a cell selection mechanism to choose a proper candidate small cell for the UEs that tend to implement inter-small cell handover (ICH). By exploiting the property of a typical non-concentric circle, i.e., circle of Apollonius, we then propose a novel analytical method for modeling inter-cell handover regions and present mathematical derivation to prove that the inter-small cell handover issues fit the property of the circle of Apollonius. We design an inter-cell handover algorithm (ICHA) by means of our proposed handover model to dynamically configure hysteresis margin and properly implement handover decision in terms of UE's mobility. Simulation results demonstrate that the proposed ICHA yields lower call drop rate and radio link failure rate than the conventional methods and hence achieve high Handover Performance Indicator (HPI).

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

The Comparison of Sphere Fitting Methods for Estimating the Center of Rotation on a Human Joint (인체관절의 회전중심 추정을 위한 구적합법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • The methods of fitting a circle to measured data, geometric fit and algebraic fit, have been studied profoundly in various areas of science. However, they have not been applied exactly to a biomechanics discipline for locating the center of rotation of a human joint. The purpose of this study was to generalize the methods to fitting spheres to the points in 3-dimension, and to estimate the center of rotation of a hip joint by three of geometric fit methods(Levenberg-Marquardt, Landau, and Sp$\ddot{a}$th) and four of algebraic fit methods(Delogne-K${\aa}$sa, Pratt, Taubin, and Hyper). 1000 times of simulation experiments for flexion/extension and ad/abduction at an artificial hip joint with four levels of range of motion(10, 15, 30, and $60^{\circ}$) and three levels of angular velocity(30, 60, and $90^{\circ}$/s) were executed to analyze the responses of the estimated center of rotation. The results showed that the Sp$\ddot{a}$th estimate was very sensitive to the marker near the center of rotation. The bias of Delogne-K${\aa}$sa estimate existed in an even larger range of motion. The Levenberg-Marquardt algorithm of geometric fit and the Pratt of algebraic fit showed the best results. The combination of two methods, using the Pratt's estimate as initial values of the Levenberg-Marquardt algorithm, could be a candidate of more valid estimator.

A STUDY ON THE NORMAL DENTAL ARCH FORM OF KOREAN ADULT (한국인 성인의 정상 치열궁 형태에 관한 연구)

  • Chung, Ha-Ik
    • The korean journal of orthodontics
    • /
    • v.3 no.1
    • /
    • pp.7-13
    • /
    • 1972
  • Many geometric curves are presented as representative form of normal dental arches by many authors; circle, ellipse, parabola or catenary curve. Among them those except circle seems difficult to be adopted as a guide in ideal arch form construction and practically many orthodontists chose circle as a standard. Author preferred circle of Bonwill's theory in study of anterior teeth alignment of Korean adults. Eighty three dental models which possess proper occlusion and good arch form were selected and copies of their occlusal surfaces obtained by Ricopy machine. The use of Ricopy machine made it possible to draw arch form exactly. Mesiodistal widths of six anterior teeth were measured and they were added to combined mesiodistal width of six anterior teeth. Circle, that include the points of two cuspal tips of canines and one incisal edge of central incisor were drawn. Distances of lateral incisors that are deviated from arc of this circle were measured and classified into four grades by degree and three groups by kind of teeth deviated. By counting the number of samples involved degree of fit of the circle to arch contour of Korean adult was described. Then, size of radius of circle, intercanine width and intermolar width were measured and evaluated their ratios to combined mesiodistal width of six anterior teeth. In normal occlusion of Korean adult anterior teeth seems to be arranged on an arc of circle the radius of which is similar to combined mesiodistal width of six anterior teeth. Intercanine width and intermolar width have rather constant ratios to combined width of six anterior teeth.

  • PDF

Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing

  • Hwang, Jeong-hwan;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.204-209
    • /
    • 2019
  • In an optical interferometer that uses sinusoidal modulation and quadrature detection, the amplitude and offset of the interference signal vary with time, even without considering system noise. As a result, the circular Lissajous figure becomes elliptical, with wide lines. We propose and experimentally demonstrate a method for compensating quadrature detection error, based on digital signal processing to deal with scaling and fitting. In scaling, fluctuations in the amplitudes of in-phase and quadrature signals are compensated, and the scaled signals are fitted to a Lissajous unit circle. To do so, we scale the average fluctuation, remove the offset, and fit the ellipse to a unit circle. Our measurements of a target moving with uniform velocity show that we reduce quadrature detection error from 5 to 2 nanometers.