• 제목/요약/키워드: circadian rhythms

검색결과 91건 처리시간 0.026초

Identification of a PAS Domain-containing Protein in a Mammalian Hibernator, Murina leucogaster

  • Cho, Sang-Gil;Kim, Dong-Yong;Eom, Ki-Hyuk;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.119-125
    • /
    • 2009
  • Mammalian hibernation is a type of natural adaptation that allows organisms to avoid harsh environment and to increase the possibility of survival. To investigate the molecular link between circadian and hibernating rhythms in the greater tube-nosed bats, Murina leucogaster, we set out to identify circadian genes that are expressed in bats, with specific focus on the PAS domain by using PCR-based screens. We could isolate a eDNA clone, designated as LPAS1, that encodes a protein of 521 amino acid residues. LPAS1 is closely related with CLOCK family with the highest homology to human CLOCK. Based on RT-PCR analyses, LPAS1 transcripts are ubiquitously present in tissues from both summer active and winter dormant periods. Given that LPAS1 is a member of the bHLH-PAS protein superfamily but lacks polyglutamine transactivation domains, it is likely to function as a repressor for endogenous CLOCK to hinder its roles in promoting transcription. Our result will open a new avenue to further examine the functional interconnection between the circadian clock and the circannual clock such as mammalian hibernation.

랫드에 있어서 주야 시차가 Bromobenzene 대사에 미치는 영향 (Effect of Circadian Rhythms on the Bromobenzene Metabolism in Rats)

  • 김광진;신중규;윤종국
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.377-383
    • /
    • 1997
  • To investigate the circadian variation in the bromobenzene metabolism, bromobenzene(400 mg/kg body weight) was intraperitoneally administered to the rats every other day for 6 days both in the night; 24:00 and the day; 12:00. Each group of animals was sacrificed at 8hr after last injection of bromobenzene. The contents of hepatic CYP were more increased in control rats of night phase than those of day phase but in case of bromobenzene treatment there were no differences in hepatic CYP between rats of the night phase and those of day phase and the injection of prednisolon inhibited the hepatic CYP content in rats. Furthermore, the decreasing rate of hepatic glutathione contents to the control was higher in rats of day phase than those of night phase by the bromobenzene treatment. And the hepatic glutathione S-transferase activities were increased both in control and bromobenzene treated rats of the night phase than those of day phase. On the other hand, liver weight per body weight(%), hepatic lipid peroxide content, serum levels of alanine aminotransferase were more increased both in bromobenzene-treated and control rats of the night phase than those in the day phase. These results indicate that the rats of night phase may induce more accelerated formation of bromobenzene 3,4-oxide from bromobezene than those of day phase in rats.

  • PDF

Differential Effects of Two Period Genes on the Physiology and Proteomic Profiles of Mouse Anterior Tibialis Muscles

  • Bae, Kiho;Lee, Kisoo;Seo, Younguk;Lee, Haesang;Kim, Dongyong;Choi, Inho
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.275-284
    • /
    • 2006
  • The molecular components that generate and maintain circadian rhythms of physiology and behavior in mammals are present both in the brain (suprachiasmatic nucleus; SCN) and in peripheral tissues. Examination of mice with targeted disruptions of either mPer1 or mPer2 has shown that these two genes have key roles in the SCN circadian clock. Here we show that loss of the clock gene mPer2 affects forced locomotor performance in mice without altering muscle contractility. A proteomic analysis revealed that the anterior tibialis muscles of the mPer2 knockout mice had higher levels of glycolytic enzymes such as triose phosphate isomerase and enolase than those of either the wild type or mPer1 knockout mice. In addition, the level of expression of HSP90 in the mPer2 mutant mice was also significantly higher than in wildtype mice. These results suggest that the reduced locomotor endurance of the mPer2 knockout mice reflects a greater dependence on anaerobic metabolism under stress conditions, and that the two canonical clock genes, mPer1 and mPer2, play distinct roles in the physiology of skeletal muscle.

Deregulated Expression of Cry1 and Cry2 in Human Gliomas

  • Luo, Yong;Wang, Fan;Chen, Lv-An;Chen, Xiao-Wei;Chen, Zhi-Jun;Liu, Ping-Fei;Li, Fen-Fen;Li, Cai-Yan;Liang, Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5725-5728
    • /
    • 2012
  • Growing evidence shows that deregulation of the circadian clock plays an important role in the development of malignant tumors, including gliomas. However, the molecular mechanisms of gene chnages controlling circadian rhythm in glioma cells have not been explored. Using real time polymerase chain reaction and immunohistochemistry techniques, we examined the expression of two important clock genes, cry1 and cry2, in 69 gliomas. In this study, out of 69 gliomas, 38 were cry1-positive, and 51 were cry2-positive. The expression levels of cry1 and cry2 in glioma cells were significantly different from the surrounding non-glioma cells (P<0.01). The difference in the expression rate of cry1 and cry 2 in high-grade (grade III and IV) and low-grade (grade 1 and II) gliomas was non-significant (P>0.05) but there was a difference in the intensity of immunoactivity for cry 2 between high-grade gliomas and low-grade gliomas (r=-0.384, P=0.021). In this study, we found that the expression of cry1 and cry2 in glioma cells was much lower than in the surrounding non-glioma cells. Therefore, we suggest that disturbances in cry1 and cry2 expression may result in the disruption of the control of normal circadian rhythm, thus benefiting the survival of glioma cells. Differential expression of circadian clock genes in glioma and non-glioma cells may provide a molecular basis for the chemotherapy of gliomas.

한 자동차공장의 1주연속 12시간주야맞교대근무 노동자들의 심박동수변이 (Circadian Disruptions of Heart rate Variability among Weekly Consecutive-12-hour 2 Shift Workers in the Automobile Factory in Korea)

  • 성주헌;염명걸;공정옥;이혜은;김인아;김정연;손미아
    • Journal of Preventive Medicine and Public Health
    • /
    • 제37권2호
    • /
    • pp.182-189
    • /
    • 2004
  • Objectives : The objective of this study is to compare the circadian patterns of heart rate variability assessed by 24-hour ambulatory electrocardiographic (ECG) recordings during day shift and night shift among the workers in the 5 days-concecutive-12-hour shift in an automobile factory in Korea. Methods : The study population consisted 300 workers, who were randomly selected among the 8700 total workers in one car factory. To analyse circadian variation, the 24-hour ECG recordings (Marquette) were measured during day shift (08:00-20:00 h) and night shift (20:00-08:00 h). Analysis was performed for all time and frequency domain measures of HRV. 233 workers completed taking 24-hour ECG recordings. Results : This study shows that the 24 hourcircadian variation mainly follows work/sleep cycle rather than day/night cycle among shift workers. This study also shows that among the night shift, the circadian variation between work and sleep cycle decreased compared to the work/sleep cycle among day shift workers. All time and frequency domain parameters (except LF/HF ratio) show significantly different between work and sleep in the day shift and night shift. Conclusion : These changes in heart rate variability circadian rhythms reflect significant reductions in cardiac parasympathetic activity with the most marked reduction in normal vagal activity among the shift workers. Especially, it suggests the circadian rhytm has blunted among the night workers. The quantification of the circadian variation in HRV can be a surrogates of workers' potential health risk, as well as suggests possible mechanisms through which the shift works compromise workers' health.

Isolation of Circadian-associated Genes in Brassica rapa by Comparative Genomics with Arabidopsis thaliana

  • Kim, Jin A;Yang, Tae-Jin;Kim, Jung Sun;Park, Jee Young;Kwon, Soo-Jin;Lim, Myung-Ho;Jin, Mina;Lee, Sang Choon;Lee, Soo In;Choi, Beom-Soon;Um, Sang-Hee;Kim, Ho-Il;Chun, Changhoo;Park, Beom-Seok
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.145-153
    • /
    • 2007
  • Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm. To identify and characterize these circadian response genes in Brassica crops whose genome was triplicated after divergence from Arabidopsis, we identified B. rapa BAC clones containing these genes by BLAST analysis of B. rapa BAC end sequences against the five corresponding Arabidopsis regions. Subsequent fingerprinting, Southern hybridization, and PCR allowed identification of five BAC clones, one for each of the five circadian-related genes. By draft shotgun sequencing of the BAC clones, we identified the complete gene sequences and cloned the five expressed B. rapa circadian-associated gene members, BrPRRs 1, 3, 5, 7, and 9. Phylogenetic analysis revealed that each BrPRR was orthologous to the corresponding APRR at the sequence level. Northern hybridization revealed that the five genes were transcribed at distinct points in the 24 hour period, and Southern hybridization revealed that they are present in 2, 1, 2, 2, and 1 copies, respectively in the B. rapa genome, which was triplicated and then diploidized during the last 15 million years.

주기적 리듬 조절에 의한 멜라토닌 생산과 생리적 기능의 중요성 (Rhythmic Control and Physiological Functional Significance of Melatonin Production in Circadian Rhythm)

  • 김민균;박슬기;안순철
    • 생명과학회지
    • /
    • 제23권8호
    • /
    • pp.1064-1072
    • /
    • 2013
  • 일주기 리듬은 모든 살아있는 유기체의 생리현상을 지배하는 호르몬의 변화에 의해서 조절된다. 포유동물에서 송과체의 주된 기능은 시상 하부 시교차 상핵에서 발생되는 일주기 리듬을 주로 어두울 때 증가하는 순환성 멜라토닌의 리듬 신호로 변화시키는 것이다. 송과체는 직접적인 광감도는 없지만, 망막신경절세포로 하부조직을 포함하는 멀티 시냅스 경로를 통하여 빛에 반응한다. 주기적인 리듬 조절은 주위환경의 빛과 멜라토닌 생성의 리듬조절 효소인 arylalkylamine-N-acetyltransferase (AANAT)의 발현과 긴밀한 관계를 통해 이루어진다. 이전 실험에서 AANAT 단백질이 어두울 때의 발현이 전사 조절, 전사 후 조절, 번역 후 조절 메커니즘으로 설명되었다. AANAT 단백질 발현에 관한 분자적 기전은 멜라토닌의 일주기 리듬에 대한 새로운 견해를 제공한다. 광범위한 동물 연구에서 많은 포유류의 계절 리듬을 위한 송과체 멜라토닌은 일주기 리듬의 조절과 수면 조절에 관련이 있는 것으로 알려졌다. 이것은 시차증이나 교대 근무 수면 장애와 같은 일주기 리듬 수면 장애를 치료하는 데 있어서 가치가 있다. 또한 멜라토닌은 다른 영역에도 영향을 미치는데 특히 몸의 생리적 기능을 조절하는데 영향을 미친다. 게다가 정신의학적 질환뿐 만 아니라 생식기 질환, 심혈관 질환, 면역 조절 질환도 이 호르몬에 의해 영향을 받는 것으로 밝혀졌다.

Observations on Normal Body Temperatures in Differently Climate Conditions

  • Nguyen, My-Hang;Hiromi Tokura
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.406-408
    • /
    • 2002
  • In order to know the characteristics of circadian rhythms in core temperature in tropical inhabitants, we measured rectal temperatures every 10 min for 24 hrs in 6 Vietnamese, 20 - 22 yrs (5 males and I females) under natural conditions. Average light intensity was 16000 lx. Ambient temperatures ranged from 33 to 36 oC. These data obtained were compared with those in Japanese setters and the Polish inhabitants. The participants were sitting mostly during wakefulness and lying in bed during sleep. The results obtained are summarized as follows: I) The average maximum value was 37.7 oC, which was significantly higher than in the Japanese and Polish as well. 2) The average minimum value was 36.4 oC, which was also lower. 3) A range of oscillation was 1.3 oC, which was clearly greater than in the people living in the temperate areas. The higher maximum value of core temperature, which was actively regulated under warm temperature, seemed of adaptive significance in order to reduce water consumption. A greater rage of oscillation in tropical Vietnamese people might have ecological significance for efficient acclimatization in the environment with strong light intensity and high ambient temperature, suggesting that the setpoint of core temperature could show a greater range of oscillation.

  • PDF

Effects of Photoperiod Treatment on Histological Changes in Testis Tissues of the Golden Hamster

  • Kang, Jae-Won;Kim, Seol-Ah;Park, Chang-Eun
    • 대한임상검사과학회지
    • /
    • 제44권1호
    • /
    • pp.31-37
    • /
    • 2012
  • Many mammals in temperate zones are affected by the distinctive changes of the four seasons in these zones. Their reproductive status is active in the summer climate and inactive during severe winter weather. The golden hamster (Mesocricetus auratus) is seasonal breeding animal whose sexual activities are regulated by photoperoidism. The reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in the photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. The aim of this study was to assess the variation in the morphology of the testis in relation to the natural photoperiod in male golden hamsters. The hamsters were castrated at different weeks (2, 5, 8, and 15). The cell numbers of tubules with spermatogonia (SG), spermatocyte (SC), spermatids (ST), and spermatozoa (SZ) were recorded in each sample. The results showed that testicular regression of golden hamsters occurred in the SD-treated animals. The present investigation determines that the effects of the photoperiod on the reproduction of male golden hamsters. It was also found that the circadian period increases the rate of reproductive inhibition in animals exposed to inhibitory photoperiods.

  • PDF