• Title/Summary/Keyword: chromosome organization

Search Result 79, Processing Time 0.029 seconds

Lamin A/C and Polymeric Actin in Genome Organization

  • Ondrej, Vladan;Lukasova, Emilie;Krejci, Jana;Matula, Pavel;Kozubek, Stanislav
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.

Ycs4 is Required for Efficient Double-Strand Break Formation and Homologous Recombination During Meiosis

  • Hong, Soogil;Choi, Eui-Hwan;Kim, Keun Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1026-1035
    • /
    • 2015
  • Condensin is not only responsible for chromosome condensation, but is also involved in double-strand break (DSB) processing in the cell cycle. During meiosis, the condensin complex serves as a component of the meiotic chromosome axis, and mediates both proper assembly of the synaptonemal complex and DSB repair, in order to ensure proper homologous chromosome segregation. Here, we used the budding yeast Saccharomyces cerevisiae to show that condensin participates in a variety of chromosome organization processes and exhibits crucial molecular functions that contribute to meiotic recombination during meiotic prophase I. We demonstrate that Ycs4 is required for efficient DSB formation and establishing homolog bias at the early stage of meiotic prophase I, which allows efficient formation of interhomolog recombination products. In the Ycs4 meiosis-specific allele (ycs4S), interhomolog products were formed at substantial levels, but with the same reduction in crossovers and noncrossovers. We further show that, in prophase chromosomal events, ycs4S relieved the defects in the progression of recombination interactions induced as a result of the absence of Rec8. These results suggest that condensin is a crucial coordinator of the recombination process and chromosome organization during meiosis.

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii

  • Choi Sang-Dun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.

NUCLEAR MATRIX CHANGES BY THE ANTISENSE INHIBITION OF TRANSGLUTAMINASE C IN IN VITRO CULTURE OF SNU-1 CELLS (체외 배양된 SNU-1 세포주에서 transglutaminase C antisense inhibition이 일으키는 세포핵질 변화)

  • Jang, Jae-Hyun;Lee, Suk-Keun;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.2
    • /
    • pp.86-94
    • /
    • 2003
  • It has been known that transglutaminase C (TGase C, TGase II) is directly participated in the DNA organization of chromosome, and affects the cellular processes such as proliferation, differentiation, and apoptosis of cells, but still not known what mechanism is working on. In this study, the cytogenetic and the immunohistochemical methods were used to observe the TGase C expression in the nuclear chromosome of the proliferating cells, especially in mitotic stage. The human gastric adenocarcinoma (SNU-1) cell line was used for immunohistochemistry and antisense inhibition study in vitro. The present study was also aimed to disclose the efficiency of antisense inhibition by using antisense oligonucleotide DNA labeled with fluorescence, and found that anti-TGase C probe was diffusely infiltrated into the cytoplasm and the nucleus of the cell. By the antisense inhibition the nuclei of SNU-1 cells became rough nuclear shape, as they were greatly reduced in TGase C immunoreactivity both for the normal and apoptotic SNU-1 cells. However, it is clearly presumed that the TGase C directly interacts with the chromosome of SNU-1 cells and it may play an important role in the division and organization of the chromosome during the mitotic stage.

Nuclear and Microtubule Reorganization in Cattle Nuclear Transfered Embryos

  • Shin, Mi-Ra;Park, Sang-Wook;Cui, Xiang-Shun;Shim, Ho-Sup;Kim, Nam-Hyung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.18-18
    • /
    • 2001
  • Despite of importance of integrated events of nucleus and microtubule remodeling in nuclear transferred embryos with somatic cells, little information is available on this subject. In this study we configured chromatin and microtubule organization following somatic cell nuclear transfer in pre- and non-activated bovine oocytes in order to clearify nuclear remodeling process and to demonstrate centrosome inheritance during nuclear transfer. The cumulus-oocyte complexes were collected from slaughterhouse and were matured in vitro for 20 h in TCM 199 supplemented hormone. Matured bovine oocytes were enucleated by aspirating the frist polar body and metaphase chromatin using a beveled pipette. Bovine fibroblast cells were fused into enucleated oocyte by electrical stimulation. Reconstructed oocytes were activated with ionomycine and 6-dimethylaminopurin, and then cultured in CRlaa medium. The organization of nuclear and microtubules were observed using laser-scanning confocal microscopy. At 1 hour after fusion, microtubule aster was seen near the transferred nucleus in most oocytes regardless activation condition. While most of fibroblast nuclei remodeled to premature chromosome condensation (PCC) and to the two masses of chromosome in non-activated oocytes, a few number of fibloblasts went to PCC and multiple pronuclear like structures in activated oocytes. Microtubular spindle was seen around condensed chromosome. Gamma-tubulin was detected in the vicinity of condensed chromosome, suggesting this is a transient spindle. The spindle seperated nucleus into two masses of chromatin which developed to the pronuclear like structures. Two pronuclear like structures were than apposed by microtubular aster and formed one syngamy like nuclear structure at 15 h following nuclear transfer. At 17 to 18 h after fusion, two centrosomes were seen near the nucleus, which nucleates micrtubules for two cell cleavage. While 31% of reconstructed oocytes in non-activated condition developed to morulae and blastocysts, a few reconstructed oocytes in pre-activated condition developed to the blastocyst. These results suggested introduction of foreign centrosome during nuclear transfer, which appeared to give an important role for somatic cell nuclear reprogramming.

  • PDF

Role of Chromosome Changes in Crocodylus Evolution and Diversity

  • Srikulnath, Kornsorn;Thapana, Watcharaporn;Muangmai, Narongrit
    • Genomics & Informatics
    • /
    • v.13 no.4
    • /
    • pp.102-111
    • /
    • 2015
  • The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles). The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42), with little interspecific variation of the chromosome arm number (fundamental number) among crocodiles (56~60). This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians) varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA) in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.