Browse > Article

Construction of Chromosome-Specific BAC Libraries from the Filamentous Ascomycete Ashbya gossypii  

Choi Sang-Dun (Department of Molecular Science and Technology, Ajou University)
Abstract
It is clear that the construction of large insert DNA libraries is important for map-based gene cloning, the assembly of physical maps, and simple screening for specific genomic sequences. The bacterial artificial chromosome (BAC) system is likely to be an important tool for map-based cloning of genes since BAC libraries can be constructed simply and analyzed more efficiently than yeast artificial chromosome (YAC) libraries. BACs have significantly expanded the size of fragments from eukaryotic genomes that can be cloned in Escherichia coli as plasmid molecules. To facilitate the isolation of molecular-biologically important genes in Ashbya gossypii, we constructed Ashbya chromosome-specific BAC libraries using pBeloBAC11 and pBACwich vectors with an average insert size of 100 kb, which is equivalent to 19.8X genomic coverage. pBACwich was developed to streamline map-based cloning by providing a tool to integrate large DNA fragments into specific sites in chromosomes. These chromosome-specific libraries have provided a useful tool for the further characterization of the Ashbya genome including positional cloning and genome sequencing.
Keywords
Ashbya gossypii; bacterial artificial chromosome (BAC); pBACwich; chromosome-specific library; I-Scel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cairns, B.R., Levinson, R.S., Yamamoto, K.R., and Kornberg, R.D. (1996). Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10, 2131-2144   DOI   ScienceOn
2 Choi, S. (2004). Large DNA transformation in plants. Methods Mol. Biol. 256, 57-67
3 Choi, S., Begum, D., Koshinsky, H., Ow, D.W., and Wing, R.A. (2000). A new approach for the identification and cloning of genes: the pBACwich system using Cre/Iox site-specific recombination. Nucleic Acids Res. 28, E19   DOI
4 Kurtzman, C.P. (1995). Relationships among the genera Ashbya, Eremothecium, Holleya and Nematospora determined from rDNA sequence divergence. J. Ind. Microbiol. 14, 523-530   DOI
5 Longmire, J.L., Brown, N.C., Meincke, L.J., Campbell, M.L., Albright, K.L., Fawcett, J.J., Campbell, E.W., Moyzis, R.K., Hildebrand, C.E., Evans, G.A., and et al. (1993). Construction and characterization of partial digest DNA libraries made from flow-sorted human chromosome 16. Genet. Anal. Tech. Appl. 10, 69-76   DOI
6 Prillinger, H., Schweigkofler, W., Breitenbach, M., Briza, P., Staudacher, E., Lopandic, K., Molnar, O., Weigang, F., Ibl, M., and Ellinger, A. (1997). Phytopathogenic filamentous (Ashbya, Eremothecium) and dimorphic fungi (Holleya, Nematospora) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast 13, 945-960   DOI   ScienceOn
7 Altmann-Johl, R. and Philippsen, P. (1996). AgTHR4, a new selection marker for transformation of the filamentous fungus Ashbya gossypii, maps in a four-gene cluster that is conserved between A. gossypii and Saccharomyces cerevisiae. Mol. Gen. Genet. 250. 69-80
8 Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793-1808   DOI   ScienceOn
9 Kim, U.J., Birren, B.W., Slepak, T., Mancino, V., Boysen, C., Kang, H.L., Simon, M.I., and Shizuya, H. (1996). Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213-218   DOI   ScienceOn
10 Maeting, I., Schmidt, G., Sahm, H., Revuelta, J.L., Stierhof, Y.D., and Stahmann, K.P. (1999). Isocitrate lyase of Ashbya gossypii-transcriptional regulation and peroxisomal localization. FEBS Lett. 444, 15-21   DOI   ScienceOn
11 Steiner, S., Wendland, J., Wright, M.G., and Philippsen, P. (1995). Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. Genetics 140, 973-987
12 Bacher, A., Le Van, Q., Keller, P.J., and Floss, H.G. (1983). Biosynthesis of riboflavin. Incorporation of $^{13}C-labeled$ precursors into the xylene ring. J. Biol. Chem. 258, 13431-13437
13 Hermida, L., Brachat, S., Voegeli, S., Philippsen, P., and Primig, M. (2005). The Ashbya Genome Database (AGD)-a tool for the yeast community and genome biologists. Nucleic Acids Res. 33, D348-D352   DOI   ScienceOn
14 Dietrich, F.S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pohlmann, R., Luedi, P., Choi, S., et al. (2004). The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304-307   DOI   ScienceOn
15 Forster, C., Santos, M.A., Ruffert, S., Kramer, R., and Revuelta, J.L. (1999). Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J. Biol. Chem. 274, 9442-9448   DOI   ScienceOn
16 Keller, P.J., Le Van, Q., Kim, S.U., Bown, D.H., Chen, H.C., Kohnle, A., Bacher, A., and Floss, H.G. (1988). Biosynthesis of riboflavin: mechanism of formation of the ribitylamino linkage. Biochemistry 27, 1117-1120   DOI   ScienceOn
17 Kim, U.J., Shizuya, H., Deaven, L., Chen, X.N., Korenberg, J.R., and Simon, M.I. (1995). Selection of a sublibrary enriched for a chromosome from total human bacterial artificial chromosome library using DNA from flow sorted chromosomes as hybridization probes. Nucleic Acids Res. 23, 1838-1839   DOI
18 Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C., and Philippsen, P. (1997). Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13, 1065-1075   DOI   ScienceOn
19 Wendland, J. and Walther, A. (2005). Ashbya gossypii: a model for fungal developmental biology. Nat. Rev. Microbiol. 3, 421-429   DOI   ScienceOn
20 Karos, M., Vilarino, C., Bollschweiler, C., and Revuelta, J.L. (2004). A genome-wide transcription analysis of a fungal riboflavin overproducer. J. Biotechnol. 113, 69-76   DOI   ScienceOn
21 Steiner, S. and Philippsen, P. (1994). Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol. Gen. Genet. 242, 263-271   DOI
22 Hall, C., Brachat, S. and Dietrich, F.S. (2005). Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot. Cell 4, 1102-1115   DOI   ScienceOn
23 Jimenez, A., Santos, M.A., Pompejus, M., and Revuelta, J.L. (2005). Metabolic engineering of the purine pathway for riboflavin production in Ashbya gossypii. Appl. Environ. Microbiol. 71, 5743-5751   DOI   ScienceOn
24 Monschau, N., Sahm, H., and Stahmann, K. (1998). Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl. Environ. Microbiol. 64, 4283-4290
25 Perrin, A., Buckle, M., and Dujon, B. (1993). Asymmetrical recognition and activity of the I-Scel endonuclease on its site and on intron-exonjunctions. Embo J. 12, 2939-2947
26 Wright, M.C. and Philippsen, P. (1991). Replicative transformation of the filamentous fungus Ashbya gassypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109, 99-105   DOI   ScienceOn
27 Forster, C., Marienfeld, S., Wilhelm, R., and Kramer, R. (1998). Organelle purification and selective permeabilisation of the plasma membrane: two different approaches to study vacuoles of the filamentous fungus Ashbya gossypii. FEMS Microbiol Lett. 167, 209-214   DOI
28 Choi, S. and Kim, U.J. (2001). Construction of a bacterial artificial chromosome library. Methods Mol. Biol. 175, 57-68
29 Motovali-Bashi, M., Hojati, Z., and Walmsley, R.M. (2004). Unequal sister chromatid exchange in the rDNA array of Saccharomyces cerevisiae. Mutat. Res. 564, 129-137   DOI   ScienceOn
30 Stahmann, K.P., Boddecker, T., and Sahm, H. (1997). Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid. Eur. J. Biochem. 244, 220-225   DOI   ScienceOn