• Title/Summary/Keyword: chromosomal variation

Search Result 63, Processing Time 0.034 seconds

Introgression of Oryza minuta into Rice, Oryza sativa (벼 Oryza sativa x O. minuta 여교배 계통에서 이입 염색체단편 검정)

  • Jin Feng Xue;Kang Kyung-Ho;Kwon Soo-Jin;Jeong Oh-Young;Le Heung Linh;Moon Huhn-Pal;Ahn Sang-Nag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.533-538
    • /
    • 2004
  • An introgression line, WH79006 was produced from a single plant from $BC_5F_3$ families from a cross between Hwaseongbyeo used as a recurrent parent and O. minuta (BBCC, Ace. No. 101154) as a donor parent, which was subsequently self-pollinated for three generations. WH79006 resembled the O. sativa parent, Hwaseongbyeo. However it differed from Hwaseongbyeo in several traits including days to heading, culm length, grain size, spikelets per panicle and fertility. These differences in the traits between WH79006 and Hwaseongbyeo can be attributed to the O. minuta introgressions. To detect the introgressions, 294 SSR markers of known chromosomal position have been used. At least, 28 introgressed chromosomal segments have been identified using SSR markers and they map to all chromosomes except chromosome 2. The size of the introgressed segments ranged from 4 to 35cM. A QTL related to culm length was detected using 75 $F_2$ plants from the Hwaseongbyeo/WH79006 cross. This QTL, cl6 located on chromosome 6 explained $9.6\%$ of the total phenotypic variation in the population. This QTL has not been detected in the previous QTL studies between Oryza sativa cultivars, indicating potentially novel alleles from O. minutan.

Chromothripsis in Treatment Resistance in Multiple Myeloma

  • Lee, Kyoung Joo;Lee, Ki Hong;Yoon, Kyong-Ah;Sohn, Ji Yeon;Lee, Eunyoung;Lee, Hyewon;Eom, Hyeon-Seok;Kong, Sun-Young
    • Genomics & Informatics
    • /
    • v.15 no.3
    • /
    • pp.87-97
    • /
    • 2017
  • Multiple myeloma (MM) is a malignant disease caused by an abnormal proliferation of plasma cells, of which the prognostic factors include chromosomal abnormality, ${\beta}$-2 microglobulin, and albumin. Recently, the term chromothripsis has emerged, which is the massive but highly localized chromosomal rearrangement in response to a one-step catastrophic event. Many studies have shown an association of chromothripsis with the prognosis in several cancers; however, few studies have investigated it in MM. Here, we studied the association between chromothripsis-like patterns and treatment resistance or prognosis. First, we analyzed nine MM cell lines (U266, MM.1S, RPMI8226, KMS-11, KMS-12-BM, KMS-12-PE, KMS-28-BM, KMS-28-PE, and NCI-H929) and bone marrow samples of four patients who were diagnosed with MM by next-generation sequencing-based copy number variation analysis. The frequency of the chromothripsis-like pattern was observed in seven cell lines. We analyzed the treatment-induced chromothripsis-like patterns in KMS-12-BM and KMS-12-PE cells. As a result, breakpoints and chromothripsis-like patterns were increased after drug treatment in the relatively resistant KMS-12-BM. We further analyzed the patients' results according to the therapeutic response, which was divided into sensitive and resistant, as suggested by the International Myeloma Working Group. The chromothripsis-like pattern was more frequently observed in the resistant group. In the sensitive group, the frequency of the chromothripsis-like pattern decreased after treatment, whereas the resistant group showed increased chromothripsis-like patterns after the treatment. These results suggest that the chromothripsis-like pattern is associated with treatment response in MM.

Prediction of Genomic Relationship Matrices using Single Nucleotide Polymorphisms in Hanwoo (한우의 유전체 표지인자 활용 개체 혈연관계 추정)

  • Lee, Deuk-Hwan;Cho, Chung-Il;Kim, Nae-Soo
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.357-366
    • /
    • 2010
  • The emergence of next-generation sequencing technologies has lead to application of new computational and statistical methodologies that allow incorporating genetic information from entire genomes of many individuals composing the population. For example, using single-nucleotide polymorphisms (SNP) obtained from whole genome amplification platforms such as the Ilummina BovineSNP50 chip, many researchers are actively engaged in the genetic evaluation of cattle livestock using whole genome relationship analyses. In this study, we estimated the genomic relationship matrix (GRM) and compared it with one computed using a pedigree relationship matrix (PRM) using a population of Hanwoo. This project is a preliminary study that will eventually include future work on genomic selection and prediction. Data used in this study were obtained from 187 blood samples consisting of the progeny of 20 young bulls collected after parentage testing from the Hanwoo improvement center, National Agriculture Cooperative Federation as well as 103 blood samples from the progeny of 12 proven bulls collected from farms around the Kyong-buk area in South Korea. The data set was divided into two cases for analysis. In the first case missing genotypes were included. In the second case missing genotypes were excluded. The effect of missing genotypes on the accuracy of genomic relationship estimation was investigated. Estimation of relationships using genomic information was also carried out chromosome by chromosome for whole genomic SNP markers based on the regression method using allele frequencies across loci. The average correlation coefficient and standard deviation between relationships using pedigree information and chromosomal genomic information using data which was verified using a parentage test andeliminated missing genotypes was $0.81{\pm}0.04$ and their correlation coefficient when using whole genomic information was 0.98, which was higher. Variation in relationships between non-inbred half sibs was $0.22{\pm}0.17$ on chromosomal and $0.22{\pm}0.04$ on whole genomic SNP markers. The variations were larger and unusual values were observed when non-parentage test data were included. So, relationship matrix by genomic information can be useful for genetic evaluation of animal breeding.

Application of array comparative genomic hybridization in Korean children under 6 years old with global developmental delay

  • Lee, Kyung Yeon;Shin, Eunsim
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.9
    • /
    • pp.282-289
    • /
    • 2017
  • Purpose: Recent advancements in molecular techniques have greatly contributed to the discovery of genetic causes of unexplained developmental delay. Here, we describe the results of array comparative genomic hybridization (CGH) and the clinical features of 27 patients with global developmental delay. Methods: We included 27 children who fulfilled the following criteria: Korean children under 6 years with global developmental delay; children who had at least one or more physical or neurological problem other than global developmental delay; and patients in whom both array CGH and G-banded karyotyping tests were performed. Results: Fifteen male and 12 female patients with a mean age of $29.3{\pm}17.6months$ were included. The most common physical and neurological abnormalities were facial dysmorphism (n=16), epilepsy (n=7), and hypotonia (n=7). Pathogenic copy number variation results were observed in 4 patients (14.8%): 18.73 Mb dup(2)(p24.2p25.3) and 1.62 Mb del(20p13) (patient 1); 22.31 Mb dup(2) (p22.3p25.1) and 4.01 Mb dup(2)(p21p22.1) (patient 2); 12.08 Mb del(4)(q22.1q24) (patient 3); and 1.19 Mb del(1)(q21.1) (patient 4). One patient (3.7%) displayed a variant of uncertain significance. Four patients (14.8%) displayed discordance between G-banded karyotyping and array CGH results. Among patients with normal array CGH results, 4 (16%) revealed brain anomalies such as schizencephaly and hydranencephaly. One patient was diagnosed with Rett syndrome and one with $M{\ddot{o}}bius$ syndrome. Conclusion: As chromosomal microarray can elucidate the cause of previously unexplained developmental delay, it should be considered as a first-tier cytogenetic diagnostic test for children with unexplained developmental delay.

Somatic Embryogenesis and Plant Regeneration in Leaf Explant Cultures of Gentiana scabra var buergeri (용담(Gentina scabra var. buergeri)의 잎 절편 배양에서 체세포배발생에 의한 식물체 재분화)

  • 방재욱;이미경;정성현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.233-237
    • /
    • 1994
  • Plant regeneration system via somatic embryogenesis in leaf explant cultures of Gentiana scabra var. buergeri has been established. Leaf segments formed calli when cultured on MS medium supplemented with 0.5 mg/L 2,4-D and 2 mg/L BAP After transferred to SH medium supplemented with 0.5 mg/L 2,4-D, 2 mg/L CPA and 0.5 mg/L kinetin, the callus became embryogenic. The embryogenic callus was subcultured every 3 to 4 weeks. Upon transfer onto SH basal medium the embryogenic callus gave rise to numerous somatic embryos, which subsequently developed into plantlets. The regenerated plants were potted in an artificial soil with mixture (peatmoss : pearlite : vermiculite : 2 : 1 : 1) and transplanted to the soil after kept under a high humidity for two weeks. A total of 78 plants out of 105 regenerated plants survived in the soil. Phenotypic variations in height, number of stems and the flowering time were observed in tile regenerated plants. Cytogenetical analyses showed no chromosomal variation.

  • PDF

Frequency of Chromosomal Abnormalities in Pakistani Adults with Acute Lymphoblastic Leukemia

  • Shaikh, Muhammad Shariq;Adil, Salman Naseem;Shaikh, Mohammad Usman;Khurshid, Mohammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9495-9498
    • /
    • 2014
  • Background: The difference in prognosis of adult and childhood acute lymphoblastic leukemia (ALL) can be attributed largely to variation in cytogenetic abnormalities with age groups. Cytogenetic analysis in acute leukemia is now routinely used to assist patient management, particularly in terms of diagnosis, disease monitoring, prognosis and risk stratification. Knowing about cytogenetic profile at the time of diagnosis is important in order to take critical decisions in management of the patients. Aim and Objectives: To determine the frequency of cytogenetic abnormalities in Pakistani adult patients with ALL in order to have insights regarding behavior of the disease. Materials and Methods: A retrospective analysis of all the cases of ALL (${\geq}15$years old) diagnosed at Aga Khan University from January 2006 to June 2014 was performed. Phenotype (B/T lineage) was confirmed in all cases by flow cytometry. Cytogenetic analysis was made for all cases using the trypsin-Giemsa banding technique. Karyotypes were interpreted using the International System for Human Cytogenetic Nomenclature (ISCN) criteria. Results: A total of 166 patients were diagnosed as ALL during the study period, of which 151 samples successfully yielded metaphase chromosomes. The male to female ratio was 3.4:1. The majority (n=120, 72.3%) had a B-cell phenotype. A normal karyotype was present in 51% (n=77) of the cases whereas 49% (n=74) had an abnormal karyotype. Of the abnormal cases, 10% showed Philadelphia chromosome; t(9;22)(q34;q11.2). Other poor prognostic cytogenetic subgroups were t(4;11)(q21;q23), hypodiploidy (35-45 chromosomes) and complex karyotype. Hyperdiploidy (47-57 chromosomes) occurred in 6.6%; all of whom were younger than 30 years. Conclusions: This study showed a relatively low prevalence of Philadelphia chromosome in Pakistani adults with ALL with an increase in frequency with age (p=0.003). The cumulative prevalence of Philadelphianegative poor cytogenetic aberrations in different age groups was not significant (p=0.6).

Morphological and Genetic Diversity of Korean Native and Introduced Safflower Germplasm

  • Shim Kang-Bo;Bae Seok-Bok;Lim Si-Kyu;Suh Duck-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2004
  • Morphological and genetic diversity of thirty nine safflower germplasm were collected and evaluated by Principal Component Analysis (PCA) and Random Amplified Polymorphic DNA (RAPD) method. Stem length and seeding to flowering days of the safflower germplasm showed $26\~117cm\;and\;76\~179$ days of variation respectively. USA originated germplasm showed higher oil content as $39\%$, but that of Japanese showed lower as $26\%$. PCA made three different cluster groups according to some agronomic characteristics of safflower. Korea originated germplasm showed similar cluster group with that of collected from USA in the PCA of stem length. But in the seeding to flowering days, it showed similar cluster pattern with that of collected from Japan rather than USA. In the experiment of RAPD analysis, total five primers showed polymorphism at the several chromosomal loci. Korea, China Japan and South Central Asia originated germplasm were differently classified with USA and South West Asia originated germplasm with lower similarity coefficient value (0.47). Most of Korea originated germplasm were grouped with South Central Asia originated germplasm with higher similarity coefficient value (0.74) conferring similar genetic background between both of them. China and Japan originated germplasm were dendrogramed with Korea originated germplasm at the 0.65 and 0.50 similarity coefficient values respectively. Some common results were expected from both of PCA and RAPD analysis, but lower genetic heritability caused by relative higher portion of environmental variance and environment by genotype interaction at the expression of those of agronomic characteristics made constraint to find any reliable results.

Chromosomal Studies of Fusarium oxysporum and its formae speciales (II) (Fusarium oxysporum 및 분화형(分化型)의 염색체에 관한 연구(II))

  • Min, Byung-Re
    • The Korean Journal of Mycology
    • /
    • v.17 no.2
    • /
    • pp.76-81
    • /
    • 1989
  • The mitotic nuclear divisions in hyphae and chromosome number in 10 strains of Fusarium oxysporum were studies with the aid of Giemsa-HCl techniques. The chromosome number of fungi was ranged from 4 to 8. Of the 10 strains (F. oxysporum f. sp. lycoperici, F. oxysporum Kangnung D2) are n=4; two (F. oxysporum Sachun3, F. oxysporum S Kohung D2) n=5; five (F. oxysporum S Kohung 3, F. oxysporum CS Hongchun D16, F. oxysporum S Bosung 5, F. oxysporum SSunchun4 and F. oxysporum S Haenam 4) n=7 and one (F. oxysporum from the Australia) are n=8. These results along with my previous papers indicate that the basic chromosome number of the F. oxysporum may be n=4 and may have been evolutionary modification within this fugal group through diploidy and aneuploidy. As additional strains are studied, the chromosome number should help to reveal steps possible phylogenetic relationship within the group as well as more clearly defining taxonomic group and variation factors.

  • PDF

Chromosomal Studies on the Genus Fusarium (Fusarium속의 염색체 분석)

  • 민병례
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.342-347
    • /
    • 1989
  • by use of HCl-Giemsa technique and light microscope, dividing vegetative nuclei in hyphae of Fusarium species were observed and the results are summerized. The chromosome number of these fungi was ranged 4 to 8. Of the 20 strains, the highest haploid chromosome number is 8 in F. solani S Hongchun K4, F. moniliforme (from banana) and F. raphani (from radish). The lowest is 4 in F. sporotrichioides NRRL 3510 and F. equiseti KFCC 11843 IFO 30198. F. solani 7468 (from Sydney), F. solani 7475 (from Sydney), F. oxysporum(from tomato). F. roseum (from rice), F. sporotrichioides C Jngsun 1, F. equiseti C Kosung 1 and F. avenaceum 46039 are n=7. F. moniliforme (from rice) F. graminearum, F. proliferatum 6787 (from Syndey), F. proliferatum 7459 (from Synder) and F. anguioides ATCC 20351 are n=6. F. moniliforme NRRL 2284, F. poae NRRL 3287 and F. trincinctum NRRL 3299 are n=5. From these results, it may be concluded that the basic haploid chromosome number of the genus Fusarium is 4 and mat have been evolutionary variation of chromosome number through aneuploidy and polyploidy.

  • PDF

Potential of the Quantitative Trait Loci Mapping Using Crossbred Population

  • Yang, Shulin;Zhu, Zhengmao;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1675-1683
    • /
    • 2005
  • In the process of crossbreeding, the linkage disequilibria between the quantitative trait loci (QTL) and their linked markers were reduced gradually with increasing generations. To study the potential of QTL mapping using the crossbred population, we presented a mixed effect model that treated the mean allelic value of the different founder populations as the fixed effect and the allelic deviation from the population mean as random effect. It was assumed that there were fifty QTLs having effect on the trait variation, the population mean and variance were divided to each QTL in founder generation in our model. Only the additive effect was considered in this model for simulation. Six schemes (S1-S6) of crossbreeding were studied. The selection index was used to evaluate the synthetic breeding value of two traits of the individual in the scheme of S2, S4 and S6, and the individuals with high selection index were chosen as the parents of the next generation. Random selection was used in the scheme of S1, S3 and S5. In this study, we premised a QTL explained 40% of the genetic variance was located in a region of 20 cM by the linkage analysis previously. The log likelihood ratio (log LR) was calculated to determine the presence of a QTL at the particular chromosomal position in each of the generations from the fourth to twentieth. The profiles of log LR and the number of the highest log LR located in the region of 5, 10 and 20 cM were compared between different generations and schemes. The profiles and the correct number reduced gradually with the generations increasing in the schemes of S2, S4 and S6, but both of them increased in the schemes of S1, S3 and S5. From the results, we concluded that the crossbreeding population undergoing random selection was suitable for improving the resolution of QTL mapping. Even experiencing index selection, there was still enough variation existing within the crossbred population before the fourteenth generation that could be used to refine the location of QTL in the chromosome region.