• Title/Summary/Keyword: chromophore

Search Result 182, Processing Time 0.027 seconds

Syntheses, X-ray Structures and Second Harmonic Generation Efficiencies of MAP (Methyl (2,4-dinitrophenyl)-aminopropanoate) Analogues

  • Lee Joo-Hee;Kim Kimoon;Kim Jong-Hyun;Kim Jong-Jean
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.268-274
    • /
    • 1992
  • An attempt to improve the second harmonic generation (SHG) efficiency of MAP (methyl (2,4-dinitrophenyl)aminopropanoate) by modifying the substituents on the amino group of MAP is described. Several MAP analogues have been prepared using optically active amino acids alanine, phenylalanine and serine, and their SHG efficiencies measured. None of the MAP analogues exhibited SHG efficiencies as high as that of MAP. X-ray crystal structures of three MAP analogues have been determined. In the crystal structures of two of them, which were the derivatives of phenylalanine, two crystallographically-independent molecules existing in the asymmetric unit are aligned almost antiparallel. These structures are consistent with the very low SHG efficiencies of these compounds. On the other hand, the crystal structure of a serine derivative reveals substantial alignment of the dinitroaniline chromophore along the polar axis. However, the angle of 86.2° between the molecular charge tranfer axis and the polar axis of the crystal is still far away from the optimum value of 54.74° for the phase-matchable SHG. The structure is consistent with the SHG efficiency of this compound which is much higher than those of the phenylalanine derivatives but still lower than that of MAP. This study demonstrates the importance of the orientation of molecules in the crystal lattice in determining secod-order nonlinear optical properties of crystalline materials.

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

Color-Tuning Mechanism of the Lit Form of Orange Carotenoid Protein

  • Man-Hyuk Han;Hee Wook Yang;Jungmin Yoon;Yvette Villafani;Ji-Young Song;Cheol Ho Pan;Keunwan Park;Youngmoon Cho;Ji-Joon Song;Seung Joong Kim;Youn-Il Park;Jiyong Park
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.513-525
    • /
    • 2023
  • Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.

Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구)

  • Lee, Sung Hyun;Jeong, Young Jae;Lee, Jong Min;Kim, Dae Sung;Bae, Eun Ji;Hong, Seong Soo;Lee, Gun Dae
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2019
  • CdS and CdZnS/ZnO materials were prepared using precipitation method and used as photocatalysts for the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The prepared photocatalysts were also characterized by XRD and UV-vis DRS. The results indicated that the photocatalysts with intended crystalline structures were successfully obtained and both the CdS and CdZnS/ZnO can absorb visible light as well as UV. The photocatalytic activities were examined with the addition of scavenger for various active chemical species and the difference of reaction mechanisms over the catalysts were discussed. The $CH_3OH$, KI and p-benzoquinone were used as scavengers for ${\cdot}OH$ radical, photogenerated positive hole and ${\cdot}O_2{^-}$ radical, respectively. The CdS and CdZnS/ZnO showed different photocatalytic degradation mechanisms of RhB. It can be postulated that ${\cdot}O_2{^-}$ radical is the main active species for the reaction over CdS photocatalyst, while the photogenerated positive hole for CdZnS/ZnO photocatalyst. As a result, the predominant reaction pathways over CdS and CdZnS/ZnO photocatalysts were found to be the dealkylation of chromophore skeleton and the cleavage of the conjugated chromophore structure, respectively. The above results may be mainly ascribed to the difference of band edge potential of conduction and valence bands in CdS, CdZnS and ZnO semiconductors and the redox potentials for formation of active chemical species.

Separation of Chromophoric Substance from Amur Cork Tree Using GC-MS (GC-MS를 이용한 황벽의 색소 성분 분리 거동)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.6
    • /
    • pp.980-989
    • /
    • 2009
  • Amur cork tree was extracted in methanol with the purpose of investigating the most effective extraction procedure for detecting the chromophore using the GC-MS analysis. Different procedures of waterbath and hotplate extractions were carried out and five different GC-MS instrument parameters including the operating temperatures in the GC capillary column and the MSD scan range were tested for their efficiencies. Berberine was determined by the detection of dihydroberberine at 15.0 min r.t. Hotplate was a better device for extracting amur cork tree than waterbath shaker either with or without presoaking in the room temperature. Water was not an adequate extraction medium for the berberine detection. The most effective GC-MS parameter was Method 4; the initial temperature at $50^{\circ}C$ followed by the temperature increase of $23^{\circ}C$/min until $210^{\circ}C$, then increase of $30^{\circ}C$/min until the final temperature reach at $305^{\circ}C$, then hold for 14 minutes to maintain the total run time 24.12 minutes. The MSD scan range for Method 4 was $35\sim400$m/z.

Second harmonic generation of pulsed corona - poled nonlinear optical polymer films (펄스 corona 배향된 비선형광학 고분자박막의 제2 고조파발생)

  • Kim, Jun-Soo;Lee, Jong-Ha;Lee, Hwang-Un;Kim, Sang-Youl;Won, Young-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • The molecular orientational dynamics of the nonlinear optical(NLO) side-chain polymer N-(4-nitrophenyl)-(L)-prolinol-poly (pphenylene terephthalates) have been studied using nonlinear optical responses as measured by second harmonic generation (SHG). A new pulsed corona poling is used to orient the NLO chromophores and the polymer segments into the noncentrosymmetric structure required to obtain the SHG signal. By corona poling of negative high voltage pulses with variable repetition rates (between 0.5 and 10 ㎑) at temperature between 25$^{\circ}C$ and 80$^{\circ}C$, well below and about the glass transition temperature 70$^{\circ}C$, the side-chain chromophores and the polymer chain contour rearrange themselves and create the domain structure observed by atomic force microscopy(AFM). The pulsed corona voltage enhances the orientational ordering of the NLO chromophores and also significantly influences the growth of SHG signal and the improved relaxation behavior after the poling field is removed, reducing the visible damage to the polymer film dramatically. This new pulsed corona poling experiment gave direct in situ evidence that the NLO chromophore and the polymer backbone undergo anisotropic rearrangement during the poling process.

Pulp Bleaching Effect and Ionization Rate of Chlorine Dioxide by Additive and Various pH Conditions (II) (pH와 첨가제에 의한 이산화염소의 분해율 및 펄프 표백효과(2)-첨가제가 chlorate 생성량의 감소와 펄프 표백 효과에 미치는 영향)

  • 윤병호;왕립군
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.49-57
    • /
    • 1999
  • In CLO2 delignification and bleaching process, formation of chlorate corresponds to a loss of 20-36% of the original CKO2 charge. Because chlorate is inactive and harmful to environmental, it will be of benefit to find methods that can reduce the formation of chlorate during chlorine dioxide bleaching. Chlorate is mainly formed by the reaction HCIO +ClO2 $\longrightarrow$H+ + Cl_ +ClO3-2 On the other hand, AOX in chlorine dioxide bleacing is formed also due to the in-situ produced hypochlorous acid. THus both AOX and chlorate could be reduced by addition of hypochlorous acid. Some paper son the reduction of AOX by additives appeared , but systematic data on chlorate reduction as well as pulp and effluent properties are not available. THus this paper of focused on the effects on the reduction of chlorate and chlorine dioxide bleachability. The additives, fulfamic a챵, AMSO, hydrogen peroxide, oxalic acid were found to eliminate chlorine selectively in chlorine and chlorine dioxide mixture.However, when they were added to bleaching process, sulfamic acid and DMSO showed significant reduction of chlorate formation but hydrogen peroxide and oxalic aicd did not, and significant amount ofhydrogen peroxide was found resided in the bleaching effluent , In addition, sulfamic acid and DMSO decreased the bleaching end ph values while hydrogen peroxide and oxalic acid did not, which also indicated that hydrogen peroxide and oxalic acid were ineffective. The difference might be ascribed to the competitives of hypochlorous acid with lignin, chlorite (CKO2) and additives. Sulfamic acid and DMSO showed better pulpbrightness development but less alkaline extraction efficiency than hydrogen peroxide , oxalic acid and control, which means that insitu hypochlorous acid contributes to the formation of new chromophore structures that can be easily eliminated by alkaline extraction. DMSO decreased the delignification ability of chlorine dioxide due to the elimination of hypochlorous acid, but sfulfamic acid did to because the chlroinated sulfamic acid had stable bleachability. In addition, sulfamic acid, and SMSO shwed decreased color and COD of bleaching effluents, hydrogen peroxide decreased effluent color but not COD content, and oxalic acid had no statistically significant effects. No significant decreases of pulp viocosity were found except for hydrogen peroxide. Based on our results , we suggest that the effectiveness of hydrogen peroxide on the reduction of AOX in literature might be explained by other mechanisms not due to the elimination of hypochlorous acid , but to the direct decomposition of AOX by hydrogen peroxide.

  • PDF

천연물로부터의 다당류에 의한 항종양효과에 관한 연구 I. 형광기표지와 HPLC에 의한 당의 분석

  • 김영식;박호군
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.132-132
    • /
    • 1993
  • 정상세포의 암세포로의 전환에 수반하는 세포표면상에 당구조 변화가 주목을 받고 있으며 이에 탄수화물이 세포간의 상호작용, 성장 등에 중요한 역할을 하리라고 생각된다. 따라서, 당구조 변화를 야기 시키는 당분해소효소나 전이활성 효소의 활성이 주요한 임상적 지표가 될 수 있다. 또한 천연물에서 유래된 다당류 등이 면역증강 효과를 나타내면서 항종양 효과를 보여준다. 이와같은 일을 원활히 수행하기 위해서는 당을 분석하는 기술이 필요하다. 당을 분석하는 방법으로 많이 이용된 것 중의 하나가 유도체를 만들어 GC에 의해서 확인하는 것이고 또한 당은 chromophore가 없기 때문에 굴절율의 검출기를 이용한 HPLC에 의해서도 분석이 가능하다. HPLC에 의한 또 다른 방법으로 당의 환원당 말단에 형광기를 결합시켜 감도를 매우 높게하여 역상 칼람을 이용해 당을 분리할 수 있다. 환원당에 결합시킬 수 있는 물질로는 대부분 amine기를 띄고 있고 결합하여 형광을 나타내는 특징을 지니고 있다. 본 연구는 형광기를 결합시켜 전기영동과 HPLC에 의해 동시에 추적이 가능한 물질을 결합시켜서 분석을 용이하게 한 방법을 이용하여 단당류를 $C_{18}$ column에 의해서 분리하였고 또한 모델로서 면역증강제로 사용되는 운지버섯 및 영지버섯 다당류와 생약에서 분리한 지유의 당을 분석하였다. 현재까지의 결과로 가장 좋은 방법은 $C_{18}$-->phenyl column을 연결하여 isocratic 방법으로 분리하였을 때이었다. 버섯의 당은 대부분이 glucose로 이루어졌고 지유는 arabinose가 주 구성성분이었다. 위의 분석 기술을 이용하면 피코몰 범위내에서 정확한 구조를 가진 항암효과의 올리고당 및 암세포의 발현에 따른 당단백질의 당의 구조를 규명하는데 도움을 줄 수 있다.aeonol이 aspirin과 같거나 강한 사망 억제 효과가 있었다.cyclopropyl-7-(2-furanyl) -6-fluoro-1,4-dihydro-4-oxo-3-quinoline carboxylic acid (compound 4), 1-cyclopropyl-7-(2-thiophenyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinoline carboxylic acid (compound 6) ,1-cyclopropyl-7-(3-pyridinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinoline carboxylic acid (compound 8), 1-cyclopropyl-7-(2-fluoro-3-pyridinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinoline carboxylic acid (compound 10)를 합성하였다.10^{-7}$ M)에 의한 단백인산화에 대하여는 더 미약한 억제-효과를 나타내었다. 이상의 결과는 PDE-1과 항우울약들의 항혈소판작용은 PKC-기질인 41-43 kD와 20 kD의 인산화를 억제함에 기인되는 것으로 사료된다.다. 것으로 사료된다.다.바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl$_{4}$$^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$$^{2-}$ , ZnCl$_{3}$$^{-}$같은 이온과 MgCl$^{+}$, MgCl$_{2}$같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 NH$_{4}$$^{+}$의 경우 Dv값이 제일 작았다. 바. 본 연구의 목적중의 하나인

  • PDF

Mineralogy and Geochemistry of Green-colored Cr-bearing Sericite from Hydrothermal Alteration Zone of the Narim Gold Deposit, Korea (나림 금광상의 열수변질대에서 산출되는 녹색크롬-견운모의 광물학적 및 지구화학적 특징)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 1997
  • Dark to pale green-colored, Cr-bearing sericites from hydrothermal alteration zone of the Narim gold deposit were investigated mineralogically and geochemically. The alteration zone is composed mineralogically of quartz, carbonate minerals and green sericite with minor amounts of chlorite, barite and sulfide minerals (pyrite, sphalerite, galena). The zone is enriched in As (967 to 1520 ppm), Cu (31 to 289 ppm), Ni (1027 to 1205 ppm), Pb (0.20 to 1.24 wt.%) and Zn (1.03 to 1.07 wt. %) compared with fresh rocks such as granitic gneiss, porphyritic biotite granite and basic dyke. The Cr, probably the chromophore element, is highly enriched in the alteration zone (1140 to 1500 ppm), host granitic gneiss (1200 ppm) and porphyritic biotite granite (1200 ppm). Occurrence and grain size of sericite are diverse, but most of the Cr-bearing sericites (150 to $200{\mu}m$ long and 20 to $30{\mu}m$ wide) occur along the boundaries between ore veins and host rocks (especially basic dyke and granitic gneiss). X-ray diffraction data of the sericite show its monoclinic form with unit-cell parameters of $a=5.202{\AA}$, $b=8.994{\AA}$, $c=20.103{\AA}$, ${\beta}=95.746^{\circ}$ and $V=935.83{\AA}^3$, which are similar with the normal 2M1-type muscovite. Representative chemical formula of the sericite is ($K_{1.54}Ca_{0.03}Na_{0.01}$)($Al_{3.42}Mg_{0.38}Cr_{0.14}Fe_{0.06}V_{0.02}$)($Si_{6.69}Al_{1.31}$)$O_{20}(OH)_4$. The Cr content increases with decrease of the octahedral Al content, and ranges from 0.36 to 2.58 wt.%. DTA and TG curves of the sericite show endothermic peaks at $342^{\circ}$ to $510^{\circ}$, $716^{\circ}$ to $853^{\circ}$ and $1021^{\circ}C$, which are due to the expulsion of hydroxyl group. The total weight loss by heating is measured to be about 8.8 wt. %, especially at $730^{\circ}C$. Infrared absorption experiments of the sericite show broad absorption band due to the O-H bond stretching vibration near the $3625cm^{-1}$, coupled with the 825 and $750cm^{-1}$ doublet. The vibration bands related with the H-O-Al and Si-O-Al bonds occur at $1030cm^{-1}$ and 500 to $700cm^{-1}$, respectively. Based on paragonite content of the sericite, the formation temperature of the Narim gold deposit is calculated to be $220{\pm}10^{\circ}C$.

  • PDF

Preparation of Trinitrophenyl Cellulose as Substrate for Cellulase Assay (Trinitrophenyl Cellulose의 조제)

  • Maeng, Jeong-Seob;Nam, Yoon-Kyu;Park, Seung-Heui;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.151-155
    • /
    • 1995
  • Two types of modified celluloses which contain trinitrophenyl groups as chromophore were synthesized from carboxymethyl cellulose Whatman CM 70 and CM 32. Diaminoethyl groups were added to the CM 70 and CM 32 to make DAE-CM celluloses and then the DAE-CM groups were substituted by 2,4,6-trinitrophenyl groups to produce TNP-celluloses. Average particle size of the TNP-cellulose from CM 32 was $44.6{\pm}9.6{\mu}m$ in diameter and $127.9{\pm}22.5{\mu}m$ in length, which was much smaller than those from CM 70, however its TNP-moiety per gram determined by using the molar extinction coefficient $1.33{\times}10^4$ of ${\varepsilon}$-TNP-lysine at 345 nm, was 0.68 millimoles, which was 5.6-fold greater than those from CM 70. The absorption spectrum of TNP-oligosaccharides which were the soluble products of TNP-celluloses by a cellulase preparation Onozuka R-10, showed a maximal peak at 344 nm. Increases in the absorbance during hydrolysis were linear with the enzyme concentration, and the differences of slope values between two types of TNP-celluloses that the more semsitive assay could be achieved by using those from CM 32 as substrate at the low range of the enzyme concentration.

  • PDF