• 제목/요약/키워드: chromium steels

검색결과 77건 처리시간 0.018초

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향 (Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

오스테나이트계 스테인리스강 용접부의 공식저항성을 위한 합금설계에 관한 연구 (A Study on Alloy Design for Improving Pitting Resistance of Austenitic Stainless Steel Weld under Ocean Water Atmosphere)

  • 변경일;정호신;성상철
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.89-96
    • /
    • 1999
  • The base metal and weld metal of alloy designed austenitic stainless steels were electrochemically tested in artificial sea water. Pitting resistance of 14 different stainless steels was evaluated by measuring pitting potential. The effect of alloy element to pitting potential was evaluated by changing chromium, nickel, sulfur content. The site of pitting initiation was observed by optical microscope. As a result of electrochemical test, pitting resistance of weld metal was higher than base metal, and rapidly cooled weld metal has higher pitting potential than slowly cooled weld metal. In case of primary δ-ferrite solidification, pitting potential was increased, but residual δ-ferrite was detrimental to pitting resistance. Chromium was more effective to pitting resistance than nickel, and sulfur was very detrimental element to pitting resistance.

  • PDF

Oxidation Behaviors of Porous Ferritic Stainless Steel Support for Metal-supported SOFC

  • Moon, I.J.;Lee, J.W.;Cho, H.J.;Choi, G.M.;Sohn, H.K.
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.196-200
    • /
    • 2010
  • Recently porous metal has been used as supporting metal in planar type SOFC. In order to search optimum alloys for porous metal support and estimate the stability of metal-supported SOFC at high temperature, it is necessary to investigate the oxidation behaviors of porous material for metal support in comparison with dense material. Oxidation tests of porous and dense stainless steels were conducted at $600^{\circ}C$ and $800^{\circ}C$. Since the specific surface area of porous material is much larger than that of dense material, surface area should be considered in order to compare the oxidation rate of porous stainless steel with that of dense stainless steel. The specific surface area of porous body was measured using image analyzer. The weight gain of porous stainless steel was much greater than those of dense stainless steels due to its larger specific surface area. considering the specific surface area, the oxidation rate of porous stainless steel is likely to be the same as that of dense stainless steel with the same surface area. The change in chromium content in stainless steel during oxidation was also investigated. The experimental result in chromium content in stainless steel during oxidation corresponded with the calculated value. While the change in chromium content in dense stainless steel during oxidation is negligible, chromium content in porous stainless steel rapidly decreases with oxidation time due to its large specific surface area. The significant decrease in chromium content in porous stainless steel during oxidation may affect the oxidation resistance of porous stainless steel support and long term stability of metal-supported SOFC.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

자동차 머플러의 스테인리스 강판 성형기술에 관한 연구 (Forming Technology of Stainless Steel Sheet for Automotive Muffler Part)

  • 박동환;소범식;배원락;조용;김태준;고태조
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.230-233
    • /
    • 2008
  • Stainless steels are alloy steels with iron as the primary constituent and chromium, nickel, and manganese as principal alloying elements. In addition to automotive, construction, and transportation industries, stainless steels have a variety of applications in the food, chemical, and pharmaceutical industries. Some common products made from stainless steel are sinks, wash basins, kitchen vessels, and cutlery. Among ferritic stainless steels, type 409 can be cold-formed easily and are used for deep-drawn parts such as vessels for the chemical and food industries. In this study, forming analyses and experiments to prevent the occurrence of inferiority such as wrinkles, crack, and neck for automotive muffler part are carried out to save the optimal conditions during forming by modifying the blank size and shape, blank holding force etc.

  • PDF

화력발전소용 Fe-18%Cr-10%Ni 강의 고온 SO2 가스 부식 (High Temperature SO2-gas Corrosion of Fe-18%Cr-10%Ni Steels for Coal-fired Power Plant)

  • 이동복
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.219-224
    • /
    • 2007
  • The corrosion characteristics of Fe-18Cr-10Ni steels were studied between $600^{\circ}C$ and $1000^{\circ}C$ in Ar+(0.2, 1)%$SG_2$ gas for up to 300 hr in order to employ Fe-18Cr-10Ni steels in the coal-fired power plants. The corrosion resistance of Fe-18Cr-10Ni steels was good due mainly to the high amount of Cr, which formed $Cr_2O_3$ from the initial corrosion stage. Fe in the steels corroded to mainly $Fe_2O_3$ and $Fe_3O_4$. Ni was not susceptible to corrosion under the current corrosion condition. Relatively thin, single-layered scales formed.

NEW RESULTS CONCERNING THE INFLUENCE OF HEAT TINGS DURING WELDING ON THE CORROSION RESISTANCE OF STAINLESS STEELS

  • Wohlfahrt, H.;Pries, H.;Saggau, R.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.29-37
    • /
    • 2002
  • High alloyed stainless steels stand out for a high corrosion resistance due to a protective passive layer which is formed when the content of chromium exceeds 13%. When welding these steels, heat tints arise in the area of the weldment. They may occur from flint yellow to intensive blue in the spectrum depending on the applied welding process and the quality of the backing gas used. Due to their structures, they partly drastically reduce the corrosion resistance of stainless steels so that they may lead to damages of the technical application of welded components. In the following the pitting resistance by different backing gases and the chemical composition of the stainless steel itself are described.

  • PDF

인장강도 1200 MPa 급 자동차 서브 프레임의 합금성분 최적화 및 열변형 거동 연구 (A Study on Dimensional Change after Heat Treatment and Optimal Chemical Composition of Steels with 1200 MPa Tensile Strength for Automotive Subframe)

  • 정우창
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.107-116
    • /
    • 2020
  • Four air hardening steels with carbon, silicon, manganese, chromium, and molybdenum variations have been used in this study to find out the optimal chemical compositions of steels with over 1200 MPa tensile strength for automotive subframe. The dimensional changes after heat treatment were determined for two automotive parts with open and closed cross sections using 3D scanner. When four steels were austenitized at 900℃ for 30 seconds, cooled at 3℃/s, reheated to 450℃ for 10 seconds followed by air cooling to simulate hot-dip galvanizing treatment showed ultra high tensile strength over 1200 MPa. Rear floor cross member with open cross section revealed much bigger dimensional changes than subframe with closed cross section after heat treatment at 900℃ for 20 minutes followed by air cooling.

스테인리스강 Spot 용접부의 산화방지에 관한 연구 (A Study on Anti-Oxidation of Stainless Steel Spot Weld)

  • 허동운;이세헌
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.58-62
    • /
    • 2011
  • Stainless steels are alloy steels with a nominal chromium content of at least 11 percent, with other alloy additions. The stainlessness and corrosion resistance of these alloy steels are attributed to the presence of a passive oxide film on the surface. When exposed to conditions like Resistance Spot Welding (RSW) process that remove the passive oxide film, stainless steels are subject to corrosive attack. And exposure to elevated temperatures causes oxidation (discoloration) of areas around indentation in Spot welding. In this paper, deal with the effect of shielding gas (Ar) preventing the corrosion, oxidation of stainless steel. And find the optimal shielding gas flow rate. In addition, suggest effective purging method for direct/indirect spot welding process.

금속의 전착 및 관련된 공정에서의 수소위성에 대한 고찰 (Hydrogen Embrittlement during Electrodeposition on Metals and Related Processes-A Review)

  • Parthasaradhy, N.V.
    • 한국표면공학회지
    • /
    • 제8권1호
    • /
    • pp.15-23
    • /
    • 1975
  • Electrodeposition of metals form aqueous solutions (eg, electroplating ) is frequently accompanied, by the discharge of hydrogen ions(in acidic solutions) or water molecules ( in alkaline electrolytes). The atomic hydrogen produced thus may partly diffuse into the interior of the substrate and when this is absorbed by iron/steel substrate, it has detrimental effects on the mechanical properties of the steel, leading to ahydrogen embrittlement. Steels, particularly the high strength steels, are prone to hydrogen embrittlement. In view of the increasing applications of high strength steels in variousindustries, particularly in the aircraft manufacture, there has been renewed interest in the studiesonhydrogen embrittlement during electroplating of metals. In this review, the author summarizes the reports on hydrogen embrittlement during preplating of metals. In this review , the author sumamrizes the hydrogen embrittlement during electroplating of metals. In this review , the author summarizes the reports on hydrogen embrittlement during preplating operations and electroplating of metals like copper, nickel, tin, zinc ,cadimum and chromium. Finally, the effect of degassing by baking to deembrittle the plated high tensile steels and mechanism of hydrogen embrittlement are briefly indicated.

  • PDF