• 제목/요약/키워드: chondrogenesis

검색결과 75건 처리시간 0.04초

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

Wnt signaling in cartilage development and degeneration

  • Chun, Jang-Soo;Oh, Hwan-Hee;Yang, Si-Young;Park, Mee-Young
    • BMB Reports
    • /
    • 제41권7호
    • /
    • pp.485-494
    • /
    • 2008
  • The Wnt signaling network, which is composed of Wnt ligands, receptors, antagonists, and intracellular signaling molecules, has emerged as a powerful regulator of cell fate, proliferation, and function in multicellular organisms. Over the past two decades, the critical role of Wnt signaling in embryonic cartilage and bone development has been well established, and much has been learnt regarding the role of Wnt signaling in chondrogenesis and cartilage development. However, relatively little is known about the role of Wnt signaling in adult articular cartilage and degenerative cartilage tissue. This review will briefly summarize recent advances in Wnt regulation of chondrogenesis and hypertrophic maturation of chondrocytes, and review data concerning the role of Wnt signaling in the maintenance and degeneration of articular chondrocytes and cartilage.

발생계배 연골세포의 분화기구에 대한 연구 I. 세포응집과 분화와의 관계 (Studies on the Differentiation of Chondrogenic Cells in Developing Chick Embryo I. Cellular Aggregation and Chondrogenesis)

  • 박대규;손종경;유정아;유병제;강신성
    • 한국동물학회지
    • /
    • 제33권3호
    • /
    • pp.310-321
    • /
    • 1990
  • 연골세포 분화기구 연구의 기초단계로서 미세 세포배양법을 정립하였으며, 세포의 응집정도와 연골분화의 관계를 조사하기 위하여 계배 limb bod 간충직세포를 여러가지 농도로 micromass 배양하면서 세포농도에 따른 세포증식정도와 proteoglycan에 결합된 alcian blue의 양 및 [35 S] sulfate의 sulfate proteohlycan에 표지되는 속도를 측정하고, 면역조직화학법을 이용하여 type II collegen의 발현을 관찰하였다. 각 농도별로 배양한 Hambruger-Hamilton stage 23/24 간충직세포 중 5. $\times$ 106 cells/ml 이상의 농도로 배양한 세포는 연골세포로 분화하였으나, 저농도로 배양한 세포는 분화하지 않았다. 반면에 stage 18/19 간충직세포는 분화단계 중에서 동일세포들끼리 응집되는 단계이며 stage 23/24 간충직세포 이 단계를 지나 분화능을 갖는 세포응축의 단계인 것으로 생각된다. 본 연구 결과 세포응집 및 분화능은 간충직세포의 발생시기에 따라 다르며, 분화능을 갖기 위해서는 세포응집이 선행조건이고, 그 적정 미세 배양 농도는 5-10 $\times$ 106 cells/ml임을 알았다. 한편, hyaluronidase의 활성은 stage 23/24세포 배양 전 과정에서 비교적 일정한 것으로 나타나 이 시기의 세포분화에는 별로 중요하지 않는 것으로 보인다.

  • PDF

BMP-2-Enhanced Chondrogenesis Involves p38 MAPK-mediated Down-Regulation of Wnt-7a Pathway

  • Jin, Eun-Jung;Lee, Sun-Young;Choi, Young-Ae;Jung, Jae-Chang;Bang, Ok-Sun;Kang, Shin-Sung
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.353-359
    • /
    • 2006
  • The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates $Wnt-7a/{\beta}$-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of ${\beta}$-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with ${\beta}$-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of ${\beta}$-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of ${\beta}$-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.

골수흡인물 농축액 및 기질유래연골형성 수술 이후 관찰된 거골의 골연골병변의 골유합: 증례 보고 (Bony Union of Osteochondral Lesion of the Talus after Bone Marrow Aspirate Concentrate and Matrix-Induced Chondrogenesis: A Case Report)

  • 송태훈;서진수;최준영
    • 대한족부족관절학회지
    • /
    • 제27권4호
    • /
    • pp.148-153
    • /
    • 2023
  • Traditionally, arthroscopic microfracture and autologous osteochondral autograft transplantation have been the primary surgical treatments for osteochondral lesions of the talus. On the other hand, recent advancements have introduced alternative approaches, such as autologous chondrocyte transplantation, matrix-derived autologous chondrocyte transplantation, intra-articular injection of concentrated bone marrow aspirate concentrate, and the use of fibrin glue to address chondral defects. Furthermore, some studies have explored a combination of bone marrow aspirate and matrix-derived chondrogenesis. In light of these developments, this report presents a case study of a young male patient in his early twenties with a relatively large osteochondral lesion exceeding 1.5 cm2 on the medial talar dome. Instead of removing the osteochondral lesion, a surgical approach was employed to retain the lesion while addressing the unstable cartilage in the affected area. This approach involved a combination of bone marrow aspirate concentrate and matrix-derived chondrogenesis. The treatment yielded favorable clinical outcomes and ultimately successfully induced the bony union of osteochondral lesions. This paper reports the author's experience with this innovative approach with a review of the relevant literature.

계배 간충직세포 분화과정에서의 Protein Kinase C Isoform들의 변화 (Isoforms of Protei,n Kinase C during the Differentiation of Chick Limb Mesenchvme)

  • 손종경;강신성
    • 한국동물학회지
    • /
    • 제38권2호
    • /
    • pp.286-293
    • /
    • 1995
  • The present studies were undertaken to examine the activitites of PKC isoforms in cultures of chick limb mesenchvme. Micromass cultures were prepared using wing buds of stage 23/24 (Hamburger and Hamilton, 19511 chick embryo. The cells were homogenized and DEAE-cellulose column chromatography was performed to get fraction containing protein kinase C (PKC) activity. PKC isoforms were resolved with hvdroxyapatitie column chromatography. Profile of PKC isoforms of cultures were compared with that of rat brain. Activity of $PKC-\beta$ isoform was appeared at the early stage of chondrogenesis. On 3 daw of culture, activities of both PKC a and $\beta$ were observed with remarkable increase but no activity of y isoform was appeared. Treatment of phorbol-12-mvristate-13-acetate (PMA) (10-7 M) to the culture inhibited chondrosenesis and down-regulated a and $\beta$ isoforms. Staurosporine promoted chondro!genesis without any effect on PKC isioforms profile. These data indicate that PKC a and $\beta,$ especiallv $\beta$ isoform is related to chondrosenesis and the promoting effect of staurosporine on chondrogenesis is not related to PKC isoforms activities.

  • PDF

거골 골연골병변에 대한 수술적 치료: 골수 흡인물 농축액 및 기질 유래 연골 형성 (Operative Treatment for Osteochondral Lesions of the Talus: Bone Marrow Aspirate Concentrate and Matrix-induced Chondrogenesis)

  • 김범수;나엽;권원한
    • 대한족부족관절학회지
    • /
    • 제24권2호
    • /
    • pp.61-68
    • /
    • 2020
  • Bone marrow aspirate concentrate and matrix-induced chondrogenesis (BMIC) is an interesting treatment option for osteochondral lesions of the talus with promising short- to mid-term results. The various terminologies used to describe this surgical method need to be addressed. These include bone marrow-derived cell transplantation, matrix-induced bone marrow aspirate concentrate, and matrix-associated stem cell transplantation. BMIC is a one-stage, minimally invasive surgery performed arthroscopically or using a mini-open arthrotomy approach without a malleolar osteotomy in most cases. The lesion is replaced with hyaline-like cartilage, and treatmentrelated complications are rare. BMIC is a safe and effective treatment option and should be considered in large lesions or lesions with a prior treatment history.

Chondrogenic Properties of Human Periosteum-derived Progenitor Cells (PDPCs) Embedded in a Thermoreversible Gelation Polymer (TGP)

  • Choi, Yang-Soo;Lim, Sang-Min;Shin, Hyun-Chong;Lee, Chang-Woo;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.550-552
    • /
    • 2006
  • Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth $factor-{\beta}3\;(TGF-{\beta}3)$. The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.