• Title/Summary/Keyword: chlorine water disinfection

Search Result 151, Processing Time 0.019 seconds

A Study the THMs Formation by Chloramination Disinfection (클로라민 소독에 의한 THMs 생성에 관한 연구)

  • 김평청;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 1999
  • This study was performed to investigate THMs formation by chloramination as a secondary disinfection in drinking water distribution system. As the $Cl_2/NH_3-N$ ratio increased from 1:1 to 4:1, the THMs concentration had actually no change in the breakpoint curve of pH 6, 7. At pH 8, THMs level was not augmented at between 1:1 and 5:1. In the $Cl_2/NH_3-N$ ratio of more than 5:1 and 6:1 respectively, THMs level was raised. Only the chloroform of THMs was insignificantly detected by both preformed chloramine and preammoniation applications, which was probably attributed to the stoichiometrically unstable equilibrium in the preparation of chloramine, whereas $CHCl_3$, $CHCl_2Br$ and $CHClBr_2$ of THMs were found in the application of free chlorine. However it turned out that the THMs levels by chloramine was incomparably inferior to that of free chlorine.

  • PDF

Intelligent Controller for Constant Control of Residual Chlorine in Water Treatment Process (정수장 잔류염소 일정제어를 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Jang, Sang-Bok;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • In this study, chlorine modeling technique based on fuzzy system is proposed to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin according to detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rule. It helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 7.3 times and the chlorine consumption by 40,000 dollars. It made a significant contribution to supply hygienically safe drinking water.

Formation of Mixed Oxidants and Inactivation of E. coil by the Electrochemical Process using a Grid Shape Pt/Ti Electrode (Pt/Ti 격자형 평판 전극을 이용한 혼합 산화제 생성 및 E. coli 불활성화)

  • Jung, Yeon Jung;Oh, Byung Soo;Park, Sang Yeon;Baek, ko Woon;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.851-855
    • /
    • 2006
  • The aim of this study was to investigate characteristics of formation of mixed oxidants and some aspects of the performance of electrochemical process as an alternative disinfection strategy for water purification. The study of electrochemical process has shown free chlorine to be produced, but smaller amounts of stronger oxidants, such as ozone, hydrogen peroxide and OH radicals, were also generated. The formation of ozone and hydrogen peroxide increased with increasing electric conductivity, but was limited at conductivities greater than 0.6 mS/cm. Also, formation of OH radical was enhanced as electric conductivity was increased to 0.9 mS/cm and The stead-state concentrations of OH radical were calculated at $1.1{\sim}6.4{\times}10^{-14}M$. Using E. coti, inactivation kinetic studies were performed. With the exception of free chlorine, the role of mixed oxidants, especially OH radical, was investigated for enhancement of the inactivation rate.

A Study on the Characteristics of Chloramination as an Alternative Disinfectant in Drinking Water (클로라민의 소독특성에 관한 연구)

  • Kim, Pung-Chung;Woo, Dal-Sik;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.77-82
    • /
    • 1999
  • This study was carried to investigate the characteristics of chloramination as a disinfection in drinking water distribution system. The raw water comes from midstream of Han river. In the range of pH 6~8, preformed chloramine of $Cl_2/NH_3-N$ ratio 5:1 had the HPC inactivation of more than 99% with lower pH and shorter contact time and available chloramine residual was decreased a little. In the chloramines of $Cl_2/NH_3-N$ ratio 3:1~5:1, the higher $Cl_2/NH_3-N$ ratio, the much inactivation of HPC was increased, but as contact time was longer, HPC inactivation of $Cl_2/NH_3-N$ ratio 3:1~5:1 were equaled. Bactericidal activity of three chlorine and postammoniation was influenced by free available chlorine completely and that of preammoniation was as follows : free chlorine ${\fallingdotseq}$ postammoniation>preammoniation>preformed chloramine.

  • PDF

Simulation Method for the Flowing Water Purification with UV Lamp (자외선램프을 이용한 유수처리장치 설계 시뮬레이션)

  • Jeong, Byeong-Ho;Lee, Kang-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.17-23
    • /
    • 2009
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. The CFD model was also used to evaluate disinfection efficiency in alternative reactor designs. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. In this paper, it describe the how to design optimal ultraviolet disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.

A Study on the Stable Operation of High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 안정적 운영에 관한 연구)

  • Cho, Haejin;Na, Chanwook;Ko, Sungho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.69-74
    • /
    • 2017
  • Sodium hypochlorite, used as water disinfectant, is generated by electrolysis of salt. Compared to chlorine gas disinfection, it is free from high-pressure gas regulation and does not generate toxic gas, so it is increasingly used as a safe disinfectant. Despite these advantages, the concentration of sodium hypochlorite decreases with temperature during long-term storage, and the amount of chlorate increases when a large amount is added, it has mainly been applied to small-scale waterworks. To solve this problem, high sodium hypochlorite generation was developed. In this study, the changes of concentration and chlorate of sodium hypochlorite with time has been studied. As a result of the test, it was found that the usable period of sodium hypochlorite produced at a certain temperature or less was increased from 1.5 days to 13 days. Overall, sodium hypochlorite can be applied even in large-scale waterworks, which makes operation more stable and also reduces the disinfection byproducts, thus it contributed greatly to securing water quality.

Comparison of Biofilm Removal Characteristics by Chlorine and Monochloramine in Simulated Drinking Water Distribution Pipe (모형 수도관에서 염소와 모노클로라민에 의한 생물막 제거 특성 비교)

  • Park, Se-Keun;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • This study investigated the characteristics of the biofilm removal by free chlorine or monochloramine. The simulated drinking water distribution pipes on which biofilms had been formed were supplied with tap water containing 0.5, 1.0, 2.0 mg/L of free chlorine or monochloramine residuals. The biofilm removal was characterized by measurement of attached HPC and biomass on pipe surfaces. Chlorine was more effective in both inactivation of attached viable heterotrophic bacteria and removal of biofilm biomass compared to monochloramine. Biofilm matrix was not much eliminated from the surfaces by monochloramine disinfection. Free chlorine residual of 2.0 mg/L was found to be effective in biomass removal. However, biofilm level as low as $10CFU/cm^2$ of attached HPC and $5{\mu}g/cm^2$ of biomass still remained on the surfaces at 2.0 mg/L of chlorine residual. The measurement of biomass appeared to be a useful means in evaluating the characteristics of biofilm removal.

Effect of Microbial Control on Alfalfa Sprout Vegetable by Depending on Sanitization Method in Kindergarten Foodservice (유치원 급식으로 이용되는 알팔파 새싹채소의 소독방법에 따른 미생물제어 효과)

  • Woo, Suhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.109-117
    • /
    • 2016
  • Purpose : This study was designed to provide basic data of effective sanitization method of sprout vegetable for microbiological safety. Methods : Sanitization treatments were performed by dipping the sprout into chlorine and vinegar water. Microbial analysis were composed of the total plate count(TPC) and coliform group count(CGC). Result : Among chlorine water sanitization, the microbial reduction was largest in 100ppm chlorine water, and its TPC and coliform group count decreased to 6.01 log CFU/g and 5.06 log CFU/g. The effective dipping time in 100ppm chlorine water treatment was 5.97 log CFU/g and 5.91 log CFU/g for 30min and 60min, in which TPC were below the microbiological safety limits of 6.00 log CFU/g. Coliform group counts were decreased to 5.44, 5.46, 5.42 log CFU/g in the dipping the spouts for 30min, 60min and 90min. As a result of sanitizing alfalfa spout by vinegar water, a microbial counts tended to decrease with increasing concentration and the dipping time. The effective concentration of vinegar water was 2% for TPC(6.00 log CFU/g) and 1% for coliform group count(5.20 log CFU/g). With 1% vinegar water treatment, TPC became below the microbiological safety limits in all samples and in particular, the sample treated for 60min and 90min(4.93, 4.54 log CFU/g). While coliform group counts were decreased to 3.91 log CFU/g in the dipping the sprouts for 90min, those were still beyond the permitted limit. Conclusion : To secure the food safety of food service facilities including kindergarten feeding, it is considered that along with the systematic study of effective disinfection method for microbiological control at the preconditioning level of spout vegetable within the range of secured maleficence to human body, and the study regarding the measures to lower the initial microbiological pollution of spout vegetable.

Bisphenol-A Removal in Conventional Water Treatment Systems (정수처리공정에서 bisphenol-A의 제거에 관한 연구)

  • 김혜리;이윤진;박선구;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • This study was carried out to investigate influencing factors of bisphenol A(BPA) removal characteristic in conventional water treatment systems to be connected with coagulation, sedimentation, filtration and disinfection. The result are summarized as follows; In BPA removal, optimal doses of PAC, alum, ferric chloride were 7.5 mg Al/L, 10.0 mg AI/L, 15.0 mg Fek. PAC was most effective coagulant to remove BPA. In coagulation process, BPA removal efficiency were increased about 2% by adjusting pH of raw water as 6. At temperature rise 1$0^{\circ}C$, BPA removal efficiency were increased 0.94%. but BPA removal efficiency in sand filtration process were under 1 %ie, so that BPA was almost not removed. At free chlorine dose 1, 2 mg/L, the reaction rate constant k in the BPA removal have been calculated to be 0.397, 0.953 min$^{-1}$ . At free chlorine dose 1, 2 mg/1-, degradation reaction of BPA was completed during 10 min and BFA removal efficiencies were 97.66, 99.99% at this time.

Evaluation of inactivation kinetics on pathogenic microorganisms by free chlorine/UV hybrid disinfection system (전해 염소수/자외선 결합 시스템을 이용한 병원성 미생물의 불활성화 키네틱스 평가)

  • Seo, Young-Seok;Kim, Aerin;Cho, Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.379-388
    • /
    • 2019
  • Chlorination and UV illumination are being widely applied to inactivate a number of pathogenic microbials in the environment. Here, we evaluated the inactivation efficiency of individual and combined treatments of chlorination and UV under various aqueous conditions. UV dosage was required higher in waste water than in phosphate buffer to achieve the similar disinfecting efficiency. Free chlorine generated by electrolysis of waste water was abundant enough to inactivate microbials. Based on these, hybrid system composed of sequential treatment of electrolysis-mediated chlorination and UV treatment was developed under waste water conditions. Compared to individual treatments, hybrid system inactivated bacteria (i.e., E. coli and S. typhimurium) and viruses (i.e., MS-2 bacteriophage, rotavirus, and norovirus) more efficiently. The hybrid system also mitigated the photo re-pair of UV-driven DNA damages of target bacteria. The combined results suggested the hybrid system would achieve high inactivation efficiency and safety on various pathogenic microbials in wastewater.