Browse > Article
http://dx.doi.org/10.11001/jksww.2019.33.5.379

Evaluation of inactivation kinetics on pathogenic microorganisms by free chlorine/UV hybrid disinfection system  

Seo, Young-Seok (Division of Biotechnology, Chonbuk National University)
Kim, Aerin (Division of Biotechnology, Chonbuk National University)
Cho, Min (Division of Biotechnology, Chonbuk National University)
Publication Information
Journal of Korean Society of Water and Wastewater / v.33, no.5, 2019 , pp. 379-388 More about this Journal
Abstract
Chlorination and UV illumination are being widely applied to inactivate a number of pathogenic microbials in the environment. Here, we evaluated the inactivation efficiency of individual and combined treatments of chlorination and UV under various aqueous conditions. UV dosage was required higher in waste water than in phosphate buffer to achieve the similar disinfecting efficiency. Free chlorine generated by electrolysis of waste water was abundant enough to inactivate microbials. Based on these, hybrid system composed of sequential treatment of electrolysis-mediated chlorination and UV treatment was developed under waste water conditions. Compared to individual treatments, hybrid system inactivated bacteria (i.e., E. coli and S. typhimurium) and viruses (i.e., MS-2 bacteriophage, rotavirus, and norovirus) more efficiently. The hybrid system also mitigated the photo re-pair of UV-driven DNA damages of target bacteria. The combined results suggested the hybrid system would achieve high inactivation efficiency and safety on various pathogenic microbials in wastewater.
Keywords
Free chlorine; UV; Pathogenic microorganisms; Inactivation kinetics; Photo re-pair;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Allerberger, F. and Wagner, M. (2010). Listeriosis: a resurgent foodborne infection, Clin. Microbiol. Infect., 16(1), 16-23.   DOI
2 Cho, M., Chung, H., and Yoon, J. (2003). Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine, Environ. Sci. Technol., 37(10), 2134-2138.   DOI
3 Cho, M., Chung, H., Choi, W., and Yoon, J. (2004). Linear correlation between inactivation of E. coli and OH radical concentration in $TiO_2$ photocatalytic disinfection, Water Res., 38(4), 1069-1077.   DOI
4 Cho, M., Chung, H., Choi, W., and Yoon, J. (2005). Different inactivation behaviors of MS-2 phage and Escherichia coli in $TiO_2$ photocatalytic disinfection, Appl. Environ. Microbiol., 71(1), 270-275.   DOI
5 Cho, M., Kim, J., Kim, J.Y., Yoon, J., and Kim, J.H. (2010). Mechanisms of Escherichia coli inactivation by several disinfectants, Water Res., 44(11), 3410-3418.   DOI
6 Cho, M., Gandhi, V., Hwang, T.M., Lee, S., and Kim, J.H. (2011). Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with $UV/H_2O_2$ followed by free chlorine, Water Res., 45(3), 1063-1070.   DOI
7 Dhandole, L.K., Seo, Y.S., Kim, S.G., Kim, A., Cho, M., and Jang J.S. (2019). A mechanism study on the photocatalytic inactivation of Salmonella typhimurium bacteria by $Cu_xO$ loaded rhodium-antimony co-doped $TiO_2$ nanorods, Photochem. Photobiol. Sci., 18(5), 1092-1100.   DOI
8 Fang, J., Fu, Y., and Shang, C. (2014). The roles of reactive species in micropollutant degradation in the UV/free chlorine system, Environ. Sci. Technol., 48(3), 1859-1868.   DOI
9 Glass, R.I., Parashar, U.D., and Estes, M.K. (2009). Norovirus gastroenteritis, N. Engl. J. Med., 361(18), 1776-1785.   DOI
10 Hemida, M.G., Rerera, R.A., Wang, P., Alhammadi, M.A., Siu, L.Y., Li, M., Poon, L.L., Saif, L., Alnaeem, A., and Peiris, M. (2013). Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013, Euro Surveill., 18(50), 20659.   DOI
11 Hwang, T.M., Nam, S., Kwon, M., and Kang, J.W. (2017). Removal of microorganic pollutants based on reaction model of UV/chlorine process, J. Korean Soc. Water Wastewater, 31(1), 73-81.   DOI
12 Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schröder, F., and Rennau, J. (1999). Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions, J. Appl. Electrochem., 29(7), 859-866.   DOI
13 Leclerc, G.J., Tartera, C., and Metcalf, E.S. (1998). Environmental regulation of Salmonella typhi invasion-defective mutants, Infect. Immun., 66(2), 682-691.   DOI
14 Lee, J.E., Zoh, K.D., and Ko, G.P. (2008). Inactivation and UV disinfection of murine norovirus with $TiO_2$ under various environmental conditions, Appl. Environ. Microbiol., 74(7), 2111-2117.   DOI
15 Peiris, J.S.M., Poon, L.L.M., and Guan, Y. (2009). Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans, Clin. Diagn. Virol., 45(3), 169-173.   DOI
16 Lee, J.E. and Ko, G.P. (2013). Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without $TiO_2$, Water Res., 47(15), 5607-5613.   DOI
17 Oguma, K., Katayama, H., and Ohgaki, S. (2004). Photoreactivation of Legionella pneumophila after inactivation by low- or medium-pressure ultraviolet lamp, Water Res., 38(11), 2757-2763.   DOI
18 Parashar, U.D., Gibson, C.J., Bresee, J.S., and Glass, R.I. (2006). Rotavirus and severe childhood diarrhea, Emerging Infect. Dis., 12(2), 304-306.   DOI
19 Shin, G.A., Linden, K.G., Arrowood, M.J., and Sobsey, M.D. (2001). Low-pressure UV inactivation and DNA repair potential of Cryptosporidium parvum oocysts, Appl. Environ. Microbiol., 67(7), 3029-3032.   DOI
20 Sinha, R.P. and Hader, D.P. (2002). UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci., 1(4), 225-236.   DOI
21 Sjogren, J.C. and Sierka, R.A. (1994). Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis, Appl. Environ. Microbiol., 60(1), 344-347.   DOI
22 Son, H., Cho, M., Kim, J., Oh, B., Chung, H., and Yoon, J. (2005). Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine, Water Res., 39(4), 721-727.   DOI
23 Tosa, K. and Hirata, T. (1999). Photoreactivation of enterohemorrhagic Escherichia coli following UV disinfection, Water Res., 33(2), 361-366.   DOI
24 Travis, T.W. and Heath, A.G. (1981). Some physiological responses of rainbow trout (Salmo gairdneri) to intermittent monochloramine exposure, Water Res., 15(8), 977-982.   DOI
25 Son, H., Cho, M., Chung, H., Choi, S., and Yoon, J. (2004). Bactericidal activity of mixed oxidants: Comparison with free chlorine, J. Ind. Eng. Chem., 10(5), 705-709.
26 Wang, W.L., Wu, Q.Y., Huang, N., Wang, T., and Hu, H.Y. (2016). Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species, Water Res., 98, 190-198.   DOI
27 Watts, M.J. and Linden, K.G. (2007). Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water, Water Res., 41(13), 2871-2878.   DOI
28 Zimmer, J.L. and Slawson, R.M. (2002). Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium- and low-pressure UV sources used in drinking water treatment, Appl. Environ. Microbiol., 68(7), 3293-3299.   DOI