• Title/Summary/Keyword: chlorination

Search Result 336, Processing Time 0.027 seconds

Manganese Dioxide-Based Chlorination of Alcohols Using Silicon Tetrachloride (이산화망간 존재하에서 사염화규소를 이용한 알코올의 염소화반응)

  • Ha, Dong Soo;Yoon, Myeong Jong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.10
    • /
    • pp.541-546
    • /
    • 1997
  • Manganese dioxide may react with silicon tetrachloride to form manganese(Ⅳ) oxodichloride which reacts subsequently with another molecule of silicon tetrachloride leading to manganese tetrachloride eventually in chlorinated solvents. This in situ generated manganese(Ⅳ) oxodichloride or manganese tetrachloride were found to be very effective for the chlorination of a wide variety of alcohols to the corresponding chlorides. Primary, secondary and benzylic alcohols were converted into corresponding chlorides when treated with silicon tetrachloride in the presence of manganese dioxide at room temperature.

  • PDF

Photocatalytic Properties of TiO2 According to Manufacturing Method (제조방법에 따른 TiO2의 광촉매 특성 분석)

  • Lee, Hong Joo;Park, Yu Gang;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.156-161
    • /
    • 2018
  • $TiO_2$ photocatalyst powders were prepared by chlorination method and sol-gel method. Specific surface area and crystalline (i.e., anatase and rutile) of the catalyst varied depending on manufacture conditions and method. TTIP-sol photocatalyst had higher methylene blue (MB) decomposition characteristics than photocatalyst from chlorination method and TBOT-sol. MB removal efficiency from aqueous solution with TTIP-sol photocatalyst was over 90%. Experimental results showed that the $TiO_2$ photocatalyst with a single anatase phase and a large specific surface area had high decomposition characteristics of organic materials.

A study on the application of water safety plans for the hazard risk management of tap water (수돗물 위해요소 리스크 관리를 위한 물안전계획 적용 연구)

  • Kim, Jinkeun;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.259-268
    • /
    • 2019
  • One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant($Q=25,000m^3/d$) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase($Ca(OCl)_2$) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities.

Influence of supplementary cementitious materials on strength and durability characteristics of concrete

  • Praveen Kumar, V.V.;Ravi Prasad, D.
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • The present study is focused on the mechanical and durability properties of ternary blended cement concrete mix of different grades 30 MPa, 50 MPa and 70 MPa. Three mineral admixtures (fly ash, silica fume and lime sludge) were used as a partial replacement of cement in the preparation of blended concrete mix. The durability of ternary blended cement concrete mix was studied by exposing it to acids HCl and $H_2SO_4$ at 5% concentration. Acid mass loss factors (AMLF), acid strength loss factor (ASLF) and acid durability factor (ADF) were determined, and the results were compared with the control mix. Chloride ions penetration was investigated by conducting rapid chlorination penetration test and accelerated corrosion penetration test on control mix and ternary blended cement concrete. From the results, it was evident that the usage of these mineral admixtures is having a beneficiary role on the strength as well as durability properties. The results inferred that the utilization of these materials as a partial replacement of cement have significantly enhanced the compressive strength of blended concrete mix in 30 MPa, 50 MPa and 70 MPa by 42.95%, 32.48% and 22.79%. The blended concrete mix shown greater resistance to acid attack compared to control mix concrete. Chloride ion ingress of the blended cement concrete mix was low compared to control mix implying the beneficiary role of mineral admixtures.

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.

Preliminary Study on Chlorination Reaction of Lithium Carbonate for Carbon-Anode-Based Oxide Reduction Applications

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2021
  • The reaction between Li2CO3 and Cl2 was investigated to verify its occurrence during a carbon-anode-based oxide reduction (OR) process. The reaction temperature was identified as a key factor that determines the reaction rate and maximum conversion ratio. It was found that the reaction should be conducted at or above 500℃ to convert more than 90% of the Li2CO3 to LiCl. Experiments conducted at various total flow rate (Q) / initial sample weight (Wi) ratios revealed that the reaction rate was controlled by the Cl2 mass transfer under the experimental conditions adopted in this work. A linear increase in the progress of reaction with an increase in Cl2 partial pressure (pCl2) was observed in the pCl2 region of 2.03-10.1 kPa for a constant Q of 100 mL·min-1 and Wi of 1.00 g. The results of this study indicate that the reaction between Li2CO3 and Cl2 is fast at 650℃ and the reaction is feasible during the OR process.

The effects of algal-derived organic matters (AOMs) and chlorinated AOMs on the survival and behavior of zebrafish

  • Se-Hyun Oh;Jing Wang;Jung Rae Kim;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.3
    • /
    • pp.141-146
    • /
    • 2023
  • Algal organic matters (AOMs) are challenging to remove using traditional water treatment methods. Additionally, they are recognized as disinfection by product (DBP) precursors during the chlorination process. These compounds have the potential to seriously harm aquatic creatures. Despite the fact that AOMs and DBPs formed from algae can harm aquatic species by impairing their cognitive function and causing behavioral problems, only a few studies on the effects of AOMs and associated DBPs have been conducted. To assess the impact of extracellular organic materials (EOMs) produced by three different hazardous algal species and the chlorinated EOMs on zebrafish, this study used fish acute embryo toxicity (FET) and cognitive function tests. With rising EOM concentrations, the embryo's survival rate and mental capacity both declined. Of the three algal species, the embryo exposed to Microcystis aeruginosa EOM exhibited the lowest survival rate. On the other hand, the embryo exposed to EOMs following chlorination demonstrated a drop in CT values in both the survival rate and cognitive ability. These findings imply that EOMs and EOMs treated with chlorine may have detrimental effects on aquatic life. Therefore, an effective EOM management is needed in aquatic environment.

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Characteristics of Chlorination Byproducts Formation of Urinary Organic Compounds (뇨 성분에서의 염소 소독부산물 생성 특성)

  • Seo, In-Sook;Son, Hee-Jong;Ahn, Wook-Sung;You, Sun-Jae;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.286-292
    • /
    • 2008
  • This study was conducted to analyze and determine the formation potential of chlorination DBPs from seven urinary compounds with or without Br$^-$. Three of seven components were kynurenine, indole and uracil that were relatively shown high the formation potential of chlorination DBPs concentrations. The reported results of THMs/DOC with or without Br$^-$ in kynurenine showed that THMs/DOC was detected 86.9 $\mu$g/mg when Br$^-$ was not added, and THMs/DOC was detected 100.8 $\mu$g/mg when Br$^-$ was presented. In indole, THMs/DOC was increased from 6.58 $\mu$g/mg to 31.4 $\mu$g/mg when Br$^-$ was added. Moreover, among them, the highest, second-highest and third-highest HAAs/DOC were shown in kynurenine, uracil and indole respectively. Specially, HAAs/DOC was significantly deceased in kynurenine and indole when Br$^-$ was presented. This was a totally different phenomenon for THMs/DOC. TCAA was dominated in HAAs for kynurenine and indole, and DCAA was also dominated in HAAs for uracil. The highest formation of HANs/DOC was shown in kynurenine whether or not Br$^-$ presented, and DCAN was predominant in HANs. HANs was not formed by chlorination in uracil. In addition, the formation of CH/DOC was relatively low in kynurenine and indole. The formation of CH/DOC was specially high(1,270 $\mu$g/mg) in uracil when Br$^-$ was not added. The formation of CH/DOC was 1,027 $\mu$g/mg in uracil when Br$^-$ was added. The formations of THMs and HAAs were also investigated in kynurenine, indole and uracil when Br$^-$ was presented or not. The formation of THMs/DOC was higher in kynurenine and indole when Br$^-$ was presented. The formation of HAAs/DOC was reduced in kynurenine when Br$^-$ was added. The result could be attributed to higher formation of THMs/DOC in kynurenine when Br$^-$ was added. The formation of HAAs/DOC was also reduced in indole when Br$^-$ was added. To the contrary, this result was not attributed to higher formation of THMs/DOC in indole when Br$^-$ was added.