• Title/Summary/Keyword: chloride permeability

Search Result 230, Processing Time 0.022 seconds

Chloride diffusion study in different types of concrete using finite element method (FEM)

  • Paul, Sajal K.;Chaudhuri, Subrata;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.39-56
    • /
    • 2014
  • Corrosion in RCC structures is one of the most important factors that affects the structure's durability and subsequently causes reduction of serviceability. The most severe cause of this corrosion is chloride attack. Hence, to prevent this to happen proper understanding of the chloride penetration into concrete structures is necessary. In this study, first the mechanism of this chloride attack is understood and various parameters affecting the process are identified. Then an FEM modelling is carried out for the chloride diffusion process. The effects of fly ash and slag on the diffusion coefficient and chloride penetration depth in various mixes of concretes are also analyzed through integrating Virtual RCPT Lab and FEM.

Experimental Study of Chloride Binding in Concrete with Mneral Amixtures (혼화재를 혼입한 콘크리트의 염화물 고정화에 관한 실험적 연구)

  • 박정준;고경택;김도겸;김성욱;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.787-792
    • /
    • 2001
  • The chloride ion penetrating into concrete is classified as the fixed chloride ion being bound in reacting to cement hydrate and the free chloride ion having a direct effect on rebar corrosion because being in solution inside porosity of concrete. Therefore, in order to study the diffusion properties of chloride ion, it is needed to evaluate binding chloride ion in concrete. In this study, we tried to give a fundamental information on diffusion of chloride ion in concrete with mineral admixtures through analysis of micro-structure transformations in concrete and effects on binding of chloride ion in cement paste when mixed with fly-ash, blast furnace slag, silica fume etc. which are used to improve durability and permeability of concrete

  • PDF

Analytical Study on the Chloride Ion's Permeation of Reinforced Concrete Repaired by Patching Repair Material (단면수복재로 보수시공한 철근콘크리트내로의 염화물이온 침투에관한 해석적 연구)

  • Yun, Sun-Young;Shin, Sang-Heon;Ryu, Byung-Cheol;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.617-620
    • /
    • 2008
  • When the RC structure repaired by patching repair method, which method refilles with patching repair material after removes degraded area, It is necessary to determine chloride ion's permeation from outside of the RC structure repaired by patching repair material. Therefore, in this study, damage from sea environment of structure was predicted, moreover, diffusion coefficient of concrete also determined to figure out rebar's corrosion and concentration of chloride ion. RCPT(Rapid Chloride Permeability Test) was used for ditermination of patching repair material's diffusion coefficient, also connection between material thickness and effect of chloride ion's permeation was examined in analytically. Results which derived by experimental test was used in FEM(Finite Element Method) and equation suggested by JSCE to predict concentration of chloride ion in different distance from surface.

  • PDF

Strength and Permeability Properties of SB Latex Modified Concrete for Cement Types (시멘트 종류에 따른 SB 라텍스 개질 콘크리트의 강도 및 투수특성)

  • Lee, Bong-Hak;Hong, Chang-Woo;Lee, Joo-Hyung;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.317-324
    • /
    • 2001
  • This study focused on the investigation of strength development and permeability of LMC(Latex Modified Concrete) and RSLMC(Rapid-Setting Cement Latex Modified Concrete) as the latex content, cement types and w/c ratio changed. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased quitely at 15% of latex content. This may be due to the flexibility of latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. The permeability test results showed that the permeability of LMC was considerably lower than that of conventional concrete. Results of chloride permeability test, for RSLMC indicated very low at an early age caused by the early formation of needle-shape ettringites and latex film.

  • PDF

Pore Structure and Permeability of Concrete Containing Pozzolanic Materials (포졸란 함유 콘크리트의 공극구조와 투과특성)

  • 김재신;소형석;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.159-162
    • /
    • 1999
  • The paper presents results of an investigation on the permeability characteristics and pore structure of concrete containing different levels of fly ash, silica fume, or blast furnace slag. The total cementitious content was 351kg/㎥, and the water/cementitious materials ratio was 0.55. The porosity and pore structure of representative pastes of the matrix were measured using mercury intrusion porosimetry, and the permeability characteristics of concrete were also determined by water and oxygen permeability, chloride ion penetration. The results show that significant reduction in permeability of concrete containing pozzolanic materials due to formation of a discontinuous macro-pore system which inhibits flow. And, the permeability of concrete and pore structure(capillary porosity or total porosity) shows linear relationship.

  • PDF

Permeability Property of Latex Modified Concrete with Cement Types (시멘트 종류별 라텍스 개질 콘크리트의 투수특성)

  • 위진우;정원경;홍창우;김동호;최삼룡;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1023-1028
    • /
    • 2001
  • This study focused on the investigation of strength development and permeability of LMC(latex modified concrete) and RSLMC(rapid-setting cement latex modified concrete) as the latex content, cement types and w/c ratio variated. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased quitely at the latex content of 15%. This may due to the flexibility of latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. The permeability test results showed that the permeability of LMC was considerably lower than that of conventional concrete. In the RSLMC's tests of permeability to chloride ion indicated very low permeability at an early age, which nay be due to the early formation of needle-shape ettringites and latex film.

  • PDF

Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete

  • Parveen, Parveen;Mehta, Ankur;Saloni, Saloni
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.231-239
    • /
    • 2019
  • The present study deals with the development of metakaolin-based geopolymer concrete (GPC) and thereafter studying the effects of adding ultra-fine slag on its mechanical and permeability characteristics. The mechanical characteristics including compressive, split tensile, flexural strengths and elastic modulus were studied. In addition, permeability characteristics including water absorption, porosity, sorptivity and chloride permeability were studied up to 90 days. The results showed the effective utilization of metakaolin for the development of elevated temperature cured geopolymer concrete having high 3-day compressive strength of 42.6 MPa. The addition of ultra-fine slag up to 15%, as partial replacement of metakaolin resulted in an increase in strength characteristics. Similar improvement in durability properties was also observed with the inclusion of ultra-fine slag up to 15%. Beyond this optimum content of 15%, further increase in ultra-fine slag content affected the mechanical as well as permeability parameters in a negative way. In addition, the relationship between various properties of GPC was also derived.

Evaluation of Chloride ions Diffusion on Hardened Cement paste And Durability of Concrete Specimen Using Inorganic Coating Material (무기질 도료를 이용한 시멘트 경화체의 C1 ̄이온확산과 콘크리트의 내구성 평가)

  • 김인섭;이종규;추용식;김병익;신영훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.221-226
    • /
    • 2001
  • Chloride diffusion effect of cement paste, freezing and thawing test, carbonation of concrete specimen were carried out using inorganic coating material. According to the chloride ions diffusion test, it is elucidated that permeability and diffusion coefficient of Cl ̄ ions and apparent coefficient of coated cement paste is smaller than plain cement paste. A durability of coated concrete specimen was enhanced by the experiment result of concrete carbonation and freezing thawing test.

  • PDF

An Evaluation of Reinforced Concrete Durability in Chloride Attack Environment under Sustained Load (염해 환경하에서 지속하중을 받는 철근콘크리트 부재의 내구성 평가)

  • Hong, Jun-Seo;Im, Chang-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1045-1050
    • /
    • 2001
  • This study was performed to evaluate reinforced concrete durability in chloride attack environment under sustained load by the corrosion of reinforcing bars and the permeation of chloride ion. Generally, it is regarded that permeability of chloride ion is determined by the properties of concrete, but the effects of load which make alternation of concrete inner structure such as crack and so on should not neglected. In this study, it is shown that the relation between bending load on RC beam, deflection and crack of specimen, permeation of chloride ion, rating of re-bar corrosion, and the relation between compression load and permeation of chloride ion. Therefore the effects of load on permeation of chloride ion and re-bar corrosion are evaluated.

  • PDF

Automatic categorization of chloride migration into concrete modified with CFBC ash

  • Marks, Maria;Jozwiak-Niedzwiedzka, Daria;Glinicki, Michal A.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.375-387
    • /
    • 2012
  • The objective of this investigation was to develop rules for automatic categorization of concrete quality using selected artificial intelligence methods based on machine learning. The range of tested materials included concrete containing a new waste material - solid residue from coal combustion in fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed experimental tests on obtained chloride migration provided data for learning and testing of rules discovered by machine learning techniques. It has been found that machine learning is a tool which can be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified with CFBC fly ash as materials of good and acceptable resistance to chloride penetration.