• Title/Summary/Keyword: chloride concentration

Search Result 1,552, Processing Time 0.027 seconds

Analysis on Durability Performance Enhancement and Economical Efficiency through Chloride Protection for Concrete Structures (콘크리트 구조물의 염해도장을 통한 내구성능 향상 및 경제적 효과분석)

  • Chai, Won-Kyu;Kim, Seong-Heon;Son, Young-Hyun;Park, Ju-Won;Lee, Cheung-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, detailed assessment for durability performance were performed on the chloride protected concrete structures to investigate the effectiveness of chloride protection. And economical efficiency for the chloride protected concrete structures were studied by LCC(Life Cycle Cost) analysis. In the comparison result of the first section repair time, it was found that the chloride protected concrete structures was economical better than the non-protected concrete structures in the long term. According to the analysis result of the accumulated chloride concentration by used time and chloride ion concentration by depth, it can be seen that the permeation through time from chloride has increased two times in the chloride protected concrete structures.

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.

Characteristics of Chloride Penetration due to Sprinkle of the Deicing Salt on the Concrete Pavement (제설제 살포에 따른 콘크리트 포장의 염화물 침투특성)

  • Park, Jin-Ro;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae;Park, Rae-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.475-478
    • /
    • 2005
  • Deicing salt has been generally used for traffic safety in winter, and the amount is increasing every year. However, deicing salt may induce the decrease of bond strength, surface scaling, and environmental pollution, etc. the purpose of this paper is to suggest the fundamental data on safety and durability for concrete structures through the estimation of chloride concentration profile and chloride diffusion coefficient. According to the test results, the critical chloride concentration($0.9\~1.2kg/m^3$)was measured at depth $23\~30mm$, and the limit chloride concentration($0.3kg/m^3$)was reached to depth 40mm. Also the surface chloride amount indicates 3.45kg per concrete unit weight, and the results showed the possibility of corrosion by deicing salt penetration.

  • PDF

Effect of Chloride Ion-reducing Bacteria on the Chloride ion Concentration in Cement Mortars (염소이온 저감능 박테리아가 모르타르의 염소이온 농도에 미치는 영향)

  • Hwang, Ji-Won;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.49-50
    • /
    • 2022
  • This study examined the potential of halophilic bacteria in reducing the chloride ion concentration within the cement mortars exposed to chloride attack. As a result of the experiment, the compressive strength of mortar with Halomonas venusta showed an equivalent performance to that of counterpart mortars without bacteria. Also, the chloride ion concentration measured in mortars including Halomonas Venusta was 71% lower than that of the counterpart mortars without bacteria.

  • PDF

Investigation on Electrochemical Characteristics of Battery Housing Material for Electric Vehicles in Solution Simulating an Acid Rain Environment with Chloride Concentrations (산성비 환경을 모사한 수용액에서 염화물 농도에 따른 전기자동차 배터리 하우징용 재료의 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • Electrochemical characteristics and damage behavior of 6061-T6 aluminum alloy used as a battery housing material for electric vehicles were investigated in solution simulating the acid rain environment with chloride concentrations. Potentiodynamic polarization test was performed to analyze electrochemical characteristics. Damage behavior was analyzed through Tafel analysis, measurement of damage area, weight loss, and surface observation. Results described that corrosion current density was increased rapidly when chloride concentration excceded 600 PPM, and it was increased about 7.7 times in the case of 1000 PPM compared with 0 PPM. Potentiodynamic polarization experiment revealed that corrosion damage area and mass loss of specimen increased with chloride concentrations. When chloride concentration was further increased, the corrosion damage area extended to the entire surface. To determine damage tendency of pitting corrosion according to chloride concentration, the ratio of damage depth to width was calculated. It was found that the damage tendency decreased with chloride concentrations. Thus, 6061-T6 aluminum alloy damage becomes larger in the width direction than in the depth direction when a small amount of chloride is contained in an acid rain environment.

Kinetics of Catalytic Oxidation of Vinyl Chloride over CrOx/γ-alumina (CrOx/γ-alumina 촉매상에서 Vinyl Chloride의 산화반응 속도해석)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.85-92
    • /
    • 1999
  • The complete catalytic oxidation of vinyl chloride was investigated over chromium oxide supported ${\gamma}$-alumina using a fixed bed micro-reactor at temperature between 240 and $300^{\circ}C$ and concentration between 600 and 3500 ppm. The oxidation of vinyl chloride was nonlinear in the concentration of vinyl chloride and zeroth order in the concentration of oxygen. The addition of HCl and $H_2O$ as products to the feed stream didn't influence the conversion of vinyl chloride. Several kinetic rate model were tested to describe the data over the range of condition investigated, and developed a model which provide the best correlation of experimental data. The resulting model of kinetic rate was derived by assuming that the reacting occurred via adsorption and subsequent decomposition of the vinyl chloride onto the oxygen covered chromium oxide surface, with the reaction being inhibited by the adsorption of vinyl chloride. The percent standard deviation between the predicted and experimental was about 5.2%, and the activation energy was 18.9 kcal/mol.

  • PDF

Zinc Chloride Toxicity on Free Proline and Organic Acids in Germinating Rice Seed

  • Kim, Sang-Kuk;Chung, Sang-Hwan;Lee, Sang-Chul;Lee, Seong-Phil
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.163-165
    • /
    • 1999
  • The study was conducted to find the critical concentrations of zinc toxicity and to determine the changes of the contents of free proline and organic acids with treatment of different zinc chloride concentrations during rice germination and seedlings grown for seven days. The concentration of zinc chloride, 140 ppm, inhibited root elongation as much as 46 times compared with the control, and the germination rate was also decreased in all treatments of zinc chloride, showing that the germination rate decreased more with increasing concentrations of zinc chloride. Its rate was only 13% with treatment of 140 ppm zinc chloride. The content of free proline with treatment of zinc chloride, 140 ppm, was highest about 4,873 $\mu$M at 3 days compared with the control. Malic acid concentration with treatment of zinc chloride, 140 ppm, increased to approximately 4 times compared to the control. Citric and succinic acid content were also slightly increased in all treatments of zinc chloride.

  • PDF

Effect of Chloride-containing Deicer on the Thermal Charateristics and Skid Resistance of Concrete (염화물을 함유한 제설제가 콘크리트의 열 특성과 미끄럼저항성에 미치는 영향에 관한 연구)

  • Lee, Byung-Duck;Yun, Byung-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.509-512
    • /
    • 2004
  • This research is targeting that estimate the effect on cement concrete pavement with type of chloride deicers. In order to this study objective, when chloride deicers were spread on road surface, thermal characteristics test was conducted. Also, skid resistance test according to types and concentration of chloride deicier, road surface conditions were investigated. As a test results, thermal characteristics with kind of chloride deicier could know that sodium chloride(NaCl) is exothermic reactive material, calcium chloride$(CaCl_2)$ is endothermic reactive material. And, in case of mixed salt of the calcium and sodium chloride, it could know that can change to the exothermic or endothermic reaction according to dosage ratios. Skid value by British Pendulum Tester(BPT) has shown that it is seldom difference between the types($CaCl_2$, NaCl, mixed salt) and solution concentrations(0.5, 0.8, 1.0, 4.0, $10\%$) of chloride deicier comparing with tap water except mixed salt($10\%$ solution concentration).

  • PDF

Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater (수산물 가공폐수의 호기성 생분해도에 미치는 염분농도의 영향)

  • Choi, Yong-Bum;Kwon, Jae-Hyouk;Rim, Jay-Myung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The study was performed to evaluate the effects of chloride concentrations on the ultimate aerobic biodegradability and to use the result as the fundamental data for sea food wastewater treatment. When the organic removal efficiency by chloride concentrations (1,400~18,000 mg/L) was evaluated, microbes adapted to the saline at ${\leq}$ 6,000 mg/L of chloride but treatment efficiency was not improved at ${\geq}$ 12,000 mg/L of chloride because of delayed reaction time. Functional coefficient $Y_I$ of non-biodegradable soluble organic and inert material production coefficient Yp by microbe metabolism increased as chloride concentrations increased. Soluble organic matter ratio by chloride concentration (0~18,000 mg/L) was 10.8~13.1%, inert material production efficiency by microbes metabolism was evaluated as 7.0~24.6%. $NH_3$-N removal efficiencies were 96.2, 96.5, 90.2 and 90.3% using original wastewater HRT 18 hr, 6,000 mg/L chloride concentration HRT 22 hr, 12,000 mg/L chloride concentration HRT 30 hr, and 18,000 mg/L chloride concentration HRT 45 hr, respectively. Nitrification process was more sensitive to salt concentration than organic matter removal to salt concentration. Under ${\geq}$ 6,000 mg/L chloride concentration, conversion rate from $NO_s$-N to $NO_2$-N was low.

Effects of Calcium Chloride Concentration and Reaction Time on Physical and Sensory Characteristics of Persimmon Calcium Alginate Beads (염화칼슘 농도와 반응시간에 따른 감 칼슘 알지네이트 비드의 물리적 및 관능적 특성)

  • Yong, Dong-Hee;Song, Min-Kyung;Yoon, Hye-Hyun
    • Culinary science and hospitality research
    • /
    • v.18 no.4
    • /
    • pp.209-221
    • /
    • 2012
  • The purpose of this study is to apply molecular gastronomy and its spherification methodology to persimmon desserts. We prepared persimmon calcium alginate beads and investigated physical and sensory characteristics of beads according to the different concentration of calcium chloride(0.5, 0.75, 1.0%) and reaction time(2, 4, 6, 8, 10 min). Lightness and yellowness were decreased significantly as both calcium chloride concentration and reaction time increased. However, redness was increased significantly as the concentration of calcium chloride and reaction time increased. Hardness, springiness, chewiness, cohesiveness, and resilience except for adhesiveness tended to increase as the concentration of calcium chloride and reaction time increased. The thickness of beads also increased as the concentration of calcium chloride and reaction time increased. Quantitative descriptive analysis showed that voluminosity, springiness, hardness, chewiness, and residue tended to increase as the concentration of calcium chloride increased. Overall acceptability reached a peak at the persimmon bead containing 0.5% calcium chloride. The result of this study showed that the concentration of calcium chloride and reaction time influenced the overall characteristics of calcium alginate beads.

  • PDF