• Title/Summary/Keyword: chloride Ion diffusion coefficient

Search Result 121, Processing Time 0.021 seconds

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF

Evaluation of the Durability at RC Structure with Surface Finishing Materials using FEM Analysis. (FEM 해석을 통한 표면마감재 시공 RC 구조물의 내구성 평가)

  • Lee, Seong-Min;Lee, Han-Seoung;Kim, Dong-Seok;Lee, Woo-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.269-272
    • /
    • 2006
  • Chloride ion diffusion is the most important thing of occuring deterioration in RC structure. So it is important to decide the precise chloride ion diffusion coefficient in order to predict the durability life in RC structure. The purpose of this study is to analyze the established data, which are restricted by chloride diffusion coefficient, and to calculate chloride ion diffusion coefficient using RCPT test. To examine the prediction of the concrete structure durability by an FEM analysis and the chloride diffusion coefficient as a variable. Each surface finishing materials were effective on the increment of chloride penetration resistance, but showed a little different effect depending on the type of surface finishing material.

  • PDF

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

The Diffusion Property of Chloride Ion into Concrete by Electrically Accelerated Method (전기적인 촉진시험에 의한 콘크리트의 염화물이온 확산특성)

  • Bae, Ju-Seong;Park, Gook-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.138-143
    • /
    • 2010
  • Recently, as many big marine concrete structures increase, it is necessary that chloride ion diffusion coefficient of concrete shall be evaluated but it will take a long time to evaluate chloride ion diffusion coefficient of concrete. Accordingly, many test methods are suggested to evaluate chloride ion diffusion coefficient in a short period time by the promotion in electro chemical ways but the systematic study for this is insufficient. Therefore, this study evaluates chloride ion penetration and diffusion features by three representative electric promotion tests targeting for three different cements whose ingredients are different and analyzes the correlationship between them. As a result, diffusion features of chloride ion varied according to the cement ingredients and three ingredients cement in which blast furnace slag powder and fly ash are mixed in constant ratio, which shows the most excellent cement diffusion properties. For diffusion properties of chloride ion, the correlationship between test methods are good.

Evaluation of Chloride Ion Diffusion Coefficient of Coating Materials based on Halo-philic Bacteria (호염성 박테리아 기반 코팅재의 염소이온 확산계수 평가)

  • Yoon, Hyuun-Sub;Lee, Jae-Wuk;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.159-160
    • /
    • 2020
  • This study examined the potentials for developing a biological coating material with high chloride resistance. The bacteria strains isolated were Halomonas alkaliphile, Halomonas venusta, and Sulfidobacter mediterraneus. Test results revealed that the developed approach is very promising in reducing the chloride ion diffusion coefficient of concrete.

  • PDF

The Evaluation of Chloride ion Diffusion in Concrete Containing Mineral Admixtures by Electrically Accelerated Test (전기촉진시험에 의한 광물질 혼화재를 혼입한 콘크리트의 염소이온 확산성능 평가에 관한 연구)

  • 김영진;이상수;김동석;유재강;김민중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.299-304
    • /
    • 2002
  • This research was to investigate the invasion and diffusion properties of chloride ion on the concrete containing mineral admixtures by the electrically accelerated test. Mineral admixtures selected in mixes were fly-ash, ground granulated blast-furnace slag, silica fume, and meta-kaolin with 3 degrees of replacement ratios. Tang and Nilsson's test method was used to estimate chloride diffusion coefficients of that mixes. As a result, the total current passing charge and the diffusion coefficient of chloride ion were reduced with the use of mineral admixtures and the increase of replacement ratios. In addition, compressive strength was related with diffusion coefficient of chloride ion. Diffusion coefficients of concrete mixed with ground granulated blast-furnace slag showed relatively low value under the range of compressive strength of 400㎏f/㎠.

  • PDF

Characteristic of Chloride ion Diffusion in Mortar According to the Substitution Ratios of the Additive (혼합재 치환율에 따른 모르타르의 염소이온 확산 특성)

  • 양승규;정연식;이웅종;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.17-22
    • /
    • 2002
  • Chloride ions have a tendency to penetrate into concrete and proceed the corrosion by depassivating rebar surface. Thus the deteriorated concrete is subject to experience severe degrading of durability under marine environment. Physical properties of mortar, such as, compressive strength and penetration depth of chloride ion were investigated. And to investigate the effect of containing SG, FA in mortar, the diffusion coefficient of chloride was measured through an electro - migration test. The diffusion coefficient of chloride was decreased with the increase of replacement ratio of SG compared with plain specimen.

  • PDF

Characteristic of Pore Structure and Chloride ion Diffusion in Concrete Containing GGBF (고로슬래그미분말 혼합 콘크리트의 공극구조 및 염소이온 확산특성)

  • 문한영;김홍삼;최두선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.365-368
    • /
    • 2002
  • This paper considers transference number in calculating diffusion coefficient of chloride ions of concrete and mercury intrusion porosimetry to investigate the volume and distribution of pore size, respectively, analyzing and discussing the property of resistance to chloride ion of concrete with granulated blast furnace slag. The experimental results show that the diffusion coefficient of chloride ion decreases with the rise of quantity of granulated blast furnace slag and pore structure of concrete with granulated blast furnace slag is different from that of OPC concrete. And from the results of regression analysis, the result showed that the diffusion coefficient of chloride ions is affected by capillary pore above 50nm.

  • PDF

Effect of Curing Condition on the Chloride ion Diffusion Coefficient in Concrete with GGBFS (양생조건이 고로슬래그 미분말을 혼입한 시멘트 콘크리트의 염화물이온 확산계수에 미치는 영향)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.421-429
    • /
    • 2019
  • The changes in the resistance to chloride ingress of concrete using a ground granulated blast furnace slag (GGBFS) according to curing conditions were examined. The curing conditions were divided in air-dry curing and under-water curing. Three concrete mixures with the GGBFS replacement ratio of 0%(control), 30%, and 60% were prepared. For tests, evaluations of concrete compressive strength, and chloride ion diffusion coefficient were performed. As the GGBFS replacement ratio increased, the concrete compressive strength of the in air-dry cured specimens decreased compared to under-water cured specimens. When the chloride ion diffusion coefficient was measured, the chloride ion diffusion coefficient decreased as the GGBFS replacement ratio increased. However, the diffusion coefficient of the in air-dry cured specimen was increased up to 111% compared with the under-water cured specimen.