• Title/Summary/Keyword: chitosan hydrogel

Search Result 42, Processing Time 0.024 seconds

Anti-tumour Efficiency of Chitosan Hydrogel Containing Anionic Liposomes as a Depot System (음이온성 리포솜이 결합된 키토산 겔의 항암효과)

  • Choi, Min-Soo;Han, Hee-Dong;Kim, Tae-Woo;Song, Chung-Kil;Park, Eun-Seok;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Depot system for local drug delivery using chitosan hydrogel has been developed to enhance the therapeutic efficacy and to prevent the severe side effect in whole body. Thus, we have prepared an injectable chitosan hydrogel containing liposomes to treat cancers clinically. Anionic liposomes incorporated to improve sustained release efficiency within chitosan hydrogel. The chitosan solution containing liposomes was designed to form a hydrogel complex at body temperature. The released behavior of doxorubicin from liposomes in chitosan hydrogel showed sustained-release caused by diffusion of doxorubicin from temperature responsive liposome into chitosan hydrogel. The chitosan hydorgel containing liposomes enhanced the therapeutic potency for the solid tumor in vivo system. Our results indicate that the liposomes in chitosan hydrogel represent a depot system for local drug delivery.

Preparation and Biodegradation of Thermosensitive Chitosan Hydrogel as a Function of pH and Temperature

  • Han, Hee-Dong;Nam, Da-Eun;Seo, Dong-Hoan;Kim, Tae-Woo;Shin, Byung-Cheol;Choi, Ho-Suk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2004
  • We have developed an injectable thermosensitive hydrogel for local drug delivery to treat cancers clinically. We selected chitosan as a polymer matrix because of its biocompatibility and biodegradability. Glycerol 2-phosphate disodium salt hydrate (${\beta}$-GP) was used to neutralize the chitosan solution to physiological pH. The chitosan solution displayed a sol-gel phase transition in a pH-and temperature-dependent manner and formed an endothermic hydrogel after subcutaneous injection into mouse in the presence of ${\beta}$-GP. Additionally, we evaluated the biodegradation of chitosan hydrogel in mice by measuring the volume of injected chitosan hydrogel after subcutaneous injection. The injected chitosan hydrogel in mice was sected and stained with hematoxylin-eosin reagent for histological observation to confirm biodegradation of the hydrogel by the infiltrated cells. Chitosan hydrogel systems that possess biocompatibility and biodegradability could be promising thermosensitive injectable materials useful as depot systems for local anti-cancer drug delivery.

Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo;Go Dong-Hyun;Park Ki-Dong;Lee Seung-Jin
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

Polydopamine-coated chitosan hydrogels for enzyme immobilization

  • Chang Sup Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.512-518
    • /
    • 2023
  • To address inherent weaknesses such as low mechanical strength and limited enzyme loading capacity in conventional chitosan or alginate beads, an additional step involving the exchange of anionic surfactants with hydroxide ions was employed to prepare porous chitosan hydrogel capsules for enzyme immobilization. Consequently, excellent thermal stability and long-term storage stability were confirmed. Furthermore, coating the porous chitosan hydrogel capsules with polydopamine not only improved mechanical stability but also exhibited remarkable enzyme immobilization efficiency (97.6% for M1-D0.5). Additionally, it was demonstrated that the scope of application for chitosan hydrogel beads, prepared using conventional methods, could be further expanded by introducing an additional step of polydopamine coating. The enzyme immobilization matrix developed in this study can be selectively applied to suit specific purposes and is expected to be utilized as a support for the adsorption or covalent binding of various substances.

Synthesis, Characterization and Swelling Properties of Chitosan/Poly(acrylic acid-co-crotonic acid) Semi-Interpenetrating Polymer Networks (Chitosan/Poly(acrylic acid-co-crotonic acid) Semi-IPN의 합성, 분석 및 팽윤거동)

  • Hosseinzadeh, Hossein;Alijani, Darioush
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.588-595
    • /
    • 2014
  • A semi-interpenetrating polymer network (semi-IPN) hydrogel composed of crosslinked chitosan and poly (acrylic acid-co-crotonic acid) was prepared in the presence of glutaraldehyde (GA) as a crosslinker. Fourier-transform infrared, thermogravimetric analysis and scanning electron microscopy were employed to confirm the structure of the semi-IPN hydrogel. The swelling capacity of hydrogel was shown to be affected by the monomers weight ratio, chitosan content, initiator and GA concentrations. The results also indicated that the semi-IPN hydrogel had different swelling capacity at various pHs. Additionally, the swelling behavior of the hydrogel was investigated in aqueous solutions of NaCl, $CaCl_2$, and $AlCl_3$.

Cellular Interaction of In Situ Chitosan- and Hyaluronic Acid-Based Hydrogel

  • Noh, In-Sup
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.183-183
    • /
    • 2006
  • Hyaluronic acid and chitosan-based poly(ethylene oxide) (HA-PEO and Chitosan-PEO) hydrogels have been employed as unique biomedical polymeric materials with properties such as bioactivity from polysaccharide, biocompatibility of HA and chitosan as well as PEO and control release of bioactive molecules from the hydrogel itself. We here examine in situ hydrogels based on hyaluronic acid and chitosan in terms of their synthesis, mechanical properties, morphologies and in vitro cellular interactions on their surface and inside. In vivo bone regeneration of HA-PEO and Chitosan-PEO hydrogels was compared with in mouse model.

  • PDF

Removal of both cation and anion pollutant from solution using hydrogel chitosan bead (Hydrogel 키토산비드를 이용한 수중의 양이온 중금속과 음이온의 제거 효율 평가)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2018
  • Cu(II) can cause health problem for human being and phosphate is a key pollutant induces eutrophication in rivers and ponds. To remove of Cu(II) and phosphate from solution, chitosan as adsorbent was chosen and used as a form of hydrogel bead. Due to the chemical instability of hydrogel chitosan bead (HCB), the crosslinked HCB by glutaraldehyde (GA) was prepared (HCB-G). HCB-G maintained the spherical bead type at 1% HCl without a loss of chitosan. A variety of batch experiment tests were carried out to determine the removal efficiency (%), maximum uptake (Q, mg/g), and reaction rate. In the single presence of Cu(II) or phosphate, the removal efficiency was obtained to 17 and 16%, respectively. However, the removal efficiency of Cu(II) and phosphate was increased to 50~55% at a mixed solution. The maximum uptake (Q) for Cu(II) and phosphate was enhanced from 11.3 to74.4 mg/g and from 3.34 to 36.6 mg/g, respectively. While the reaction rate of Cu(II) and phosphate was almost finished within 24 and 6 h at single solution, it was not changed for Cu(II) but was retarded for phosphate at mixed solution.

Catechol-Chitosan Hydrogel: Scale-up Synthesis and Self-Healing Properties (카테콜-키토산 하이드로겔의 대용량 합성과 자가 치유 특성 분석)

  • Choi, Hoe Young;Ko, Haye Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.251-252
    • /
    • 2022
  • Chemical crosslinking is the most widely used method for hydrogel preparations. We prepared a hydrogel using chitosan catechol/polyvinyl alcohol and sodium tetraborate decahydrate (Na2B4O7·10H2O). The formation of hydrogels often presents inconsistent results and issues according to the reaction scale. Therefore, we measured and analyzed the self-healing property and viscoelasticity of hydrogels attributed to scale-up synthesis using a rheometer.

  • PDF

Thermosensitive Chitosan-based Hydrogel with Growth Factor as Adhesion Barrier (성장인자/키토산이 담지된 온도감응성 하이드로젤의 유착방지제로서의 응용)

  • Park, Jun-Kyu;Nah, Jae-Woon;Choi, Changyong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.480-486
    • /
    • 2015
  • The adhesion of tissue and organ occur with frequency after surgery. Theomosensitive hydrogel was prepared from poloxamer/chitosan/epidermal growth factor as adhesion barrier agent. The prepared hydrogel showed sol-gel transition temperatures around human temperature and gelation temperature was the faster within 1 min. The hydrogel sustained the release of epidermal grow factor during 7 days. The hydrogel was highly effective for the prevention of tissue and organ adhesion in rat model. The thermosensitive and antibacterial chitosan hydrogel can be useful to consider the anti-adhesion barrier with increased adhesion of organ and sustained release of epidermal growth factor.