• Title/Summary/Keyword: chitosan/PVA blend films

Search Result 8, Processing Time 0.024 seconds

Degradation and Preparation of Blend Films Using Natural Polymers Chitosan and Algin (키토산과 알긴을 이용한 블랜드필름의 제조와 분해)

  • 류정욱;이홍열;오세영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.417-422
    • /
    • 1999
  • Algin and chitosan are known as biodegradable natural polymers. PVA is useful for the production of water soluble packaging, paper, textile sizes. PVA/Algin and PVA/chitosan films were prepared by solution blends method in the weight ratio of chitosan, algin for the purpose of useful biodegradable films. Thermal and mechanical properties of blend films such as DSC, impact strength, tensile strength and morphology by SEM were determined. As a result, The ratio of 10.0wt% PVA/chitosan films were similar to PVA at thermal and mechanical properties. PVA/Algin films were found that phase separation was occured as more than 25wt% increasing the blend ratio of algin. PVA/Algin films were observed to be less partially compatibility than 10wt% increasing the blend ratio of algin by DSC, mechanical properties and SEM. Blend films were completely degraded pH 4.0 better than 7.0, 10.0 in the buffer solution. Also, they were rapidly degraded in the enzyme( glucosidase) solution better than pH solution by enzymolysis.

  • PDF

Effects of Degradation according to Enzyme and pH changes of PVA/chitosan blend films (PVA/Chitosan 블랜드필름의 효소와 pH 변화에 따른 분해효과)

  • Jo, Hyung-Jae;Kim, Jong-Woan;Hwang, Sung-Kwy;Lee, Ki-Chang;Jeong, Duck-Chae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.21-26
    • /
    • 1998
  • Polyvinyl alcohol[PVA] is useful for the production of water-soluble packaging, paper, textile sizes. PVA and Chitosan are known as biodegradable polymers. PVA/chitosan blend films were prepared by solution blends method in the weight ratio of chitosan for the purpose of useful biodegradable films. Thermal and mechanical properties of PVA/chitosan blend films such as DSC, impact strength, tensile strength and morphology by SEM were determined. As a result, The ratio of 10.0wt% PVA/chitosan blend films were similar to PVA. Blend films were completely degraded pH 4.0 better than 7.0, 10.0 in the buffer solution. Also, Blend films were rapidly degraded enzyme(${\beta}-glucosidase$) solution better than pH solution by Enzymolysis.

Pot Test and Preparation of PVA/Chitosan Blending Film Accoding to Molecular Weight of Chitosan (키토산의 분자량에 따른 PVA/Chitosan 블랜드필름의 제조와 토양분해 실험)

  • 이기창;황성규;김종완;정덕채;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.48-53
    • /
    • 1998
  • Chitin is known as biodegradable natural polymer. But, in spite of various application of chitin from waste marine sources, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. We made various viscosity of chitosan from chitin by change of Mima's method through the deacetylation which is various condition of NaOH concentration, reaction time and temperature. Also, Polyvinyl alcohol/chitosan blend films were prepared by different solution blends containing the ratio of 5, 10, 15 and 20% chitosan and low, medium, high molecular weight of chitosan to find a more useful biodegradable polymer. Thermal and mechanical properties of PVA/chitosan blend films such as DSC, impact strength, tensile strength and morphological changes by SEM were determined. The 10-15% PVA/chitosan(low, medium) blend films were similar to PVA. Also, PVA/chitosan blend films at the laboratory soil test(Pot Test) were completely degraded in month with four kinds of soils by microorganisms.

  • PDF

Preparation and Characterization of the Blends of Poly(vinyl alcohol) and N-(2-hydroxy)propyl-3-trimethylammonium Chitosan Chloride (폴리(비닐 알코올)과 N-(2-하이드록시)프로필-3-트리메틸 키토산 클로라이드 블렌드의 제조와 특성 분석)

  • 김영호;최재원;이은영
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.405-412
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) and N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), a water soluble chitosan derivative synthesized by the reaction of quaternary ammonium compound with chitosan, were blended using water as a solvent and the PVA/HTCC blend films with various compositions were prepared by solution casting method. The miscibility between the two polymers and the thermal properties of the blend films were investigated using FT-IR, DSC, DMA, and TGA. Single glass transition temperatures and single melting temperatures of the blend films along with the strong and clear film state for the whole composition of blending ratios suggest the miscibility between PVA and HTCC. The PVA/HTCC blend films with HTCC content of 1% and greater showed excellent antimicrobial activity.

Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films (폴리(비닐 알코올)/키토산 블렌드 필름의 제조 및 특성)

  • 정민기;김대선;최용혁;손태원;권오경;임학상
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.253-262
    • /
    • 2004
  • Poly(vinyl alcohol)(PVA)/chitosan blend films with non-toxicity, biodegradability, and biocom-patibility were prepared by solution casting. Variation of the physicochemical properties of the blend films was investigated through to several analysis methods. Examination of antibacterial properties revealed that bacterio-static ratios of all blend samples containing chitosan more than 10 wt% were greater than 99.9%. Moisture regain was increased with increasing chitosan content but the degree of swelling was decreased. Up to chitosan content 15 wt%t, the melting and crystallization temperature of blend films was increased with chitosan content. The blends containing chitosan content 10 and 15 wt% gave melting temperature 229 and 228$^{\circ}C$, respectively. However, the melting temperature was decreased if chitosan content exceeded 20 wt%. The mechanical properties of the blend films were increased with increasing chitosan content in both dry and wet states. The blend film including 15 wt% chitosan exhibited unusually high tensile strength.

Antibiotic Activity of PVA Blending Films Using Chitosan (키토산을 이용한 PVA 블랜드 필름의 항균특성)

  • Kim, Kyung-Min;Kong, Seung-Dae;Yoon, Cheol-Hun;Kim, Yong-Yeul;Lee, Han-Seob
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.198-202
    • /
    • 2000
  • PVA blend films were prepared by solution blending method for the purpose of useful antibiotic polymers. Characteristics properties of blending films such as elongation and tensile strength were determined. Tensile strength and elongation were rapidly reduced as increasing the blending ratio of natural polymer. Blend films were found that phase separation was occured as more than 25wt% increasing the blend ratio of chitosan. Also, The antibiotics of blend films were examined against gram(+) and gram(-) by disk susceptibility test. As a result, kind of blending films to show the highest antibiotics was chitosan 20wt% and the selectivity of mold strain was observed.

Thermomechanical Characteristics of Poly(vinyl alcohol)/Chitosan Films and Its Blend Hydrogels (폴리(비닐 알코올)/키토산 블렌드와 블렌드 수화젤의 열특성)

  • Park Jun Seo;Park Jang Woo;Kim Byung Ho
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.183-189
    • /
    • 2005
  • Films of poly(vinyl alcohol)(PVA)/chitosan blends and its blend hydrogels were prepared by the solution casting method. The state of miscibility of the blends and blend hydrogels were examined over the entire composition range by differential scanning carorimetry (DSC), thermogravimetry (TGA), and dynamic mechanical analysis (DMA). DSC analysis shows the depression of melting point of PVA in the blends and the decrease of crystallization temperature of PVA in the blends were observed with increasing chitosan content in the blends. TGA analysis indicates that chitosan was thermally more stable than PVA and the thermal stability of PVA in the blends was higher than that of pure PVA, due to some interactions between two component polymers in the blend. The glass transition temperature $(T_g)$ of the chitosan and of PVA, measured by DMA, were at 160 and $90^{\circ}C$, respectively. The $T_g$ of the blends was changed with the content of chitosan in the blends. The results of thermal and viscoelastic analysis indicate some miscibility between component polymers in the blend exists. Moisture and cross linking in the blend and blend hydrogel, which strongly change thermal and physical properties of hydrophilic polymers, affected the miscibility of chitosan and PVA to a small extent.

A Study on the Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films (폴리비닐알코올/키토산 블렌드 필름의 제조 및 그 특성에 관한 연구)

  • Jeong, Min-Gi;Son, Tae-Won;Kim, Young-Hun;Cho, Jin-Won;Kim, Dae-Sun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.321-322
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) is a polymeric biomaterial that obtained by the saponification of poly(vinyl acetate) (PVAc). It has a nontoxic and water-soluble synthetic polymer, and has excellent biodegradability, biocompatibility, ability of film forming, and hydrophilic property, which is widely used in biochemical and biomedical applications.$\^$1)/ Chitosan is one of a few natural cationic polysaccharides that can be obtaiend by alkaline deacetylation of chitin which is the second most abundant polymeric material in the earth.$\^$2)/ (omitted)

  • PDF