• Title/Summary/Keyword: chitin derivatives

Search Result 31, Processing Time 0.024 seconds

Synthesis and Antimicrobial Properties of the Chitosan Derivatives

  • Lee, Eun Kyoung;Kim, You Kyoung
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.254-263
    • /
    • 2021
  • In this study, chitosan obtained after varying extents of deacetylation (i.e., 10%, 30%, and 47%) was employed to introduce antibacterial properties to chitin. The deacetylation reaction completion, wherein the amino group content of chitin was reduced, was ascertained from the FT-IR and NMR analyses. The 47%-deacetylated chitosan exhibited superior antibacterial properties against Bacillus in a disk diffusion test. To further improve these properties, chitosan derivatives were grafted by acrylic acid and acrylamide. The varying concentrations of carboxyl groups, primary amines, and -CH2-CH2- with increasing acrylic acid and acrylamide contents were determined by FT-IR and NMR analyses. The enhanced antibacterial properties of the chitosan derivatives, owing to the increased acrylic acid and acrylamide contents, were revealed by the disk diffusion test. In particular, the derivatives with 1.3% acrylic acid and acrylamide showed the highest antibacterial activity, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%, as observed through the ASTM E2149 standard test.

Possibility of Dyeing Wastewater Treatment using Chitin (Chitin을 이용한 염색폐수 처리가능성 연구)

  • Hwang, Sung-Kwy;Lee, Han-Seab;Hwang, Yong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.87-93
    • /
    • 1998
  • In spite of various applications of chitin derivatives from waste marine sources, commercial use of chitin has been limited due to resistance to chemicals and the absense of proper solvents. We prepared chitin through decalcification, bleaching and deproteination from protunus trituberculatus shells by the application of Hackman's method. Structural and chemical properties of chitin were investigated to have proper specific surface area and particle size by IR, BET and PSA. The amount of absorbed water of chitin reached equilibrium by stirring about 15 minutes. The amount of absored water of the prepared chitin were large than the commercial chitin. When prepared chitin tested on dyeing wastewater, they showed better treatment efficiency in COD, suspended solid, and color tests than the commercial chitin. The adsorption capacity increased with decreasing particle size for the prepared chitin. Treatment efficiency for color was increased as the sitirring rate increased. Results show the possibility of the prepared chitin from waste marine sources as a treatment system for dyeing wastewater.

Emulsifying Property of Carboxymethylchitin

  • Byun, Hee-Guk;Park, Pyo-Jam;Kim, Se-Kwon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.237-238
    • /
    • 2001
  • Chitin is the second most abundant natural polymer after cellulose. It is mainly extracted from crustaceous shells and cell walls of fungi, insects and yeast. Chitin is known to be insoluble in most common solvents except for strong acids or N,N-dimethylacetamid because of its rigid crystalline structure through intra- and intermolecular hydrogen bonds. Therefore, different derivatives have been prepared based on chemical and enzymic modification of chitin. (omitted)

  • PDF

Preparation and Characterization of Microcrystalline Chitin from Crab Shell (게 껍질로부터 Microcrystalline Chitin 제조와 특성 규명)

  • 김성배
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.481-488
    • /
    • 1996
  • In spite of diverse applications of chitin derivatives, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. One of methods to reduce such high resistance to chemicals is to make microcrystalline chitin(MCC) by hydrolysis of chitin. Presently, MCC is produced mainly by using high concentration of acid, but this treatment requires an extensive posttreatment to remove or recover acid. An alternative process for MCC production was developed by using dilute hydrochloric acid with ultrasound and hydrogen peroxide. The major parameters for this process were found to be acid concentration, swelling time and temperature, and irradiation time and frequency of ultrasound. The effects of these parameters on MCC molecular weight were investigated. The molecular weight of MCC produced at a typical condition was around 30,000 which was approximately 1/8 of that of chitin and approached to a constant value. This phenomenon was explained by introducing the model of molecular arrangement of cellulose. SEM analysis showed that both chitin and MCC had a fibrous shaped morphology and the fibril size of MCC was much smaller than that of chitin.

  • PDF

Preparation and Characterizations of Various Chitosan from Chitin (Chitin으로부터 다양한 chitosan의 제조와 특성)

  • 조형재;황성규;이기창;이한섭;김판기
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.1
    • /
    • pp.34-40
    • /
    • 1998
  • Chitin is known as biodegradable natural polymer. But, in spite of various application of chitin from waste marine sources, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. Therefore, we studied that another viscosity chitosan were prepared from chitin which were deacetylated under various concentration of NaOH solution, reaction time and temperature by the application of Mirna's method. The major parameters for these manufacturing methods were found to be concentration of alkali solution, reaction time and temperature etc. Besides, we studied that various chitosan derivatives were prepared from chitin by crosslinkage with epichlorohydrin and 1,3-dichloropropanol. The effects of these parameters on another viscosity(molecular weight) chitosan and crosslinked chitosan dervatives were investigated by various analysis apparatus. SEM analysis showed that both chitin and chitosan had a particle shaped morphology and another molecular weight chitosan according to the particle size was much smaller than that of chitin.

  • PDF

Synthesis and Antibacterial Activity of Chitosan-Phthalylsulfathiazole (Chitosan-phthalylsulfathiazole의 합성과 항균성)

  • 최봉종;이기창;황성규;오세영;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.50-56
    • /
    • 1997
  • Applied for Drug Delivery System, polymer drug was prepared with chitosan and phthalylsulfathiazole. In spite of various application of chitin derivatives, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. In this study, Chitosan were prepared from chitin which were deacetylated under various condition. The synthetic procedures of polymer drug were performed by acid chloride methods. The antibiotic activities of polymer drug exhibited growth-inhibitory activity against Staphylococcus aureus, Staphylococcus epidermidis, E. coli, Salmonella typhimurium, Klebsiella pneumoniae at the concentration of 471-514 $\mu$g/ml in general. Comparatively, Polymer drug exhibited broad antibacterial activity on MICs 897-1280 $\mu$g/ml against Gram-positive and Gram-negative bacteria including Staphylococcus aureus, Staphylococcus epidermidis and E. coli.

  • PDF

Antibacterial Activity by Chitosan Derivatives with Quaternary Ammonium Salt (4차 암모늄기를 가진 키토산 유도체의 항균성)

  • Kim, C.H.;Choi, Y.S.;Choi, K.S.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.1020-1026
    • /
    • 1996
  • Chitosan is the deacetylation product of chitin. Chitosan was converted to N-alkyl chitosan derivatives using proper aldehyde having different alkyl chains, then chitosan derivatives with quaternary ammonium salt were producted by quaternization with methyl iodide. Their antibacterial activities aganst S. aureus(ATCC 6538P) and E. coli (ATCC 14339), gram-positive bacteria and gram-negative bacteria, respectively, as introduced alkyl length were evaluated by shake flask method using colony count. The antibacteiral activity was found to be increased as alkyl chains. hydrophobic goups. These antibacterial agents were more active against S. aureus than E. coli. It may be due to the different of structure of cytoplasmic membrane.

  • PDF

Characterization of Streptococcus mutans Ingbritt Sucrose-glucan Glucosyltransferase and the Inhibition Effect of Chitin Derivatives on its Activity (Streptococcus mutans Ingbritt sucrose-glucan glucosyltransferase 특성과 그 활성에 미치는 키틴 유도체들의 효과)

  • Ju, Wan-Taek;Ji, Myeong-Sim;Park, Ro-Dong
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.173-178
    • /
    • 2012
  • Sucrose-glucan glucosyltransferase (Gtf) is an important enzyme involved in the cavity formation process where insoluble glucan is synthesized. In this study, we purified Gtf from Streptcoccus mutans Ingbritt through ammonium sulfate precipitation, Sephadex G-150, CM-Sephadex, and DEAE-Sephadex column chromatographies. A 13-fold of purification was achieved with a total yield of 6.3%. The apparent molecular mass of the enzyme was determined to be 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal pH and temperature were established to be 6.0 and $40^{\circ}C$, respectively. The enzyme activity could be inhibited to 22-59% by 1 mM $Hg^{2+}$, $Cu^{2+}$ and $Al^{3+}$, and to 68% by 1 mM EDTA. It was also inhibited 40% by 2 mM xylitol and 35-45% by 0.05% soluble chitosan, glycol chitosan, and glycol chitin. This is the first report to reveal the inhibition effect of chitin derivatives on Gtf activity, which may be further applicable to develop gargles to overcome cavity.

Analysis of the Involvement of Chitin-Binding Domain of ChiCW in Antifungal Activity, and Engineering a Novel Chimeric Chitinase with High Enzyme and Antifungal Activities

  • Huang, Chien-Jui;Guo, Shu-Huei;Chung, Shu-Chun;Lin, Yu-Ju;Chen, Chao-Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1169-1175
    • /
    • 2009
  • An antifungal chitinase, ChiCW, produced by Bacillus cereus 28-9 is effective against conidial germination of Botrytis elliptica, the causal agent of lily leaf blight. ChiCW as a modular enzyme consists of a signal peptide, a catalytic domain, a fibronectin type-III-like domain, and a chitin-binding domain. When two C-terminal domains of ChiCW were truncated, $ChiCW{\Delta}FC$ (lacking the chitin-binding domain and fibronectin type III-like domain) lost its antifungal activity. Since $ChiCW{\Delta}C$ (lacking the chitin-binding domain) could not be expressed in Escherichia coli as $ChiCW{\Delta}FC$ did, a different strategy based on protein engineering technology was designed to investigate the involvement of the chitin-binding domain of ChiCW ($ChBD_{ChiCW}$) in antifungal activity in this study. Because ChiA1 of Bacillus circulans WL-12 is a modular enzyme with a higher hydrolytic activity than ChiCW but not inhibitory to conidial germination of Bo. elliptica and the similar domain composition of ChiA1 and ChiCW, the C-terminal truncated derivatives of ChiA1 were generated and used to construct chimeric chitinases with $ChBD_{ChiCW}$. When the chitin-binding domain of ChiA1 was replaced with $ChBD_{ChiCW}$, the chimeric chitinase named ChiAAAW exhibited both high enzyme activity and antifungal activity. The results indicate that $ChBD_{ChiCW}$ may play an important role in the antifungal activity of ChiCW.

Carboxy-terminus truncations of Bacillus licheniformis SK-1 CHI72 with distinct substrate specificity

  • Kudan, Sanya;Kuttiyawong, Kamontip;Pichyangkura, Rath
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.375-380
    • /
    • 2011
  • Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72${\Delta}$ChBD) and deletions of both FnIIID and ChBD (CHI72${\Delta}$FnIIID${\Delta}$ChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72-${\Delta}$ChBD and CHI72${\Delta}$FnIIID${\Delta}$ChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72${\Delta}$ChBD and CHI72${\Delta}$FnIIID-${\Delta}$ChBD on ${\beta}$-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.