• 제목/요약/키워드: chip-type

검색결과 768건 처리시간 0.023초

초소형 세라믹 칩 안테나 (SMD형) 개발 (Development of ultra small chip ceramic antenna (SMD Type))

  • 이현주;정은희;오용부;이호준;윤종남;류영대;김종규
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 추계기술심포지움논문집
    • /
    • pp.131-135
    • /
    • 2002
  • 본 연구에서는 개인 통신기의 핵심부품인 초소형 세라믹 칩 안테나 (SMD형) 개발의 무선회로 설계 기술, 초소형 설계기술, 표면실장기술, 소형화 SMD기술, Test기술 및 설계기반 마련 및 대외 경쟁력 있는 초소형 세라믹 칩 안테나 (SMD형) 개발의 초소형화 기술을 확보하였다. 중심주파수는 2442.5MHz(Type), 반사손실은 -l0dB이하, 정재파비는 2max, xy의 최대 이득은 -2dB 이상, size는 0.05ccmax이다.

  • PDF

무선통신시스템을 위한 극소형 RF 칩 인덕터의 개발 (Development of Microscale RF Chip Inductors for Wireless Communication Systems)

  • 윤의중;김재욱;정영창;홍철호
    • 대한전자공학회논문지SD
    • /
    • 제40권10호
    • /
    • pp.17-23
    • /
    • 2003
  • 본 논문에서는 고성능의 극소형, 솔레노이드 형태의 RF 칩 인덕터를 연구하였다. 제작된 RF 칩 인덕터의 크기는 1.0×0.5×0.5㎣ 이었다. 코아의 재료 (96% Al₂O₃)와 모양 (I-type)은 인덕터의 성능을 극대화시키도록 Maxwell three-dimensional field simulator를 이용하여 결정되었다. 40㎛의 직경을 가진 가는 구리(Cu)도선을 코일로 사용하였다. 개발된 인덕터의 인덕턴스 (L), 품질계수 (Q), 그리고 커패시턴스 (C) 들에 대한 고주파 특성은 RF 임피던스/재료 분석기 (HP16193A 시험 fixture가 장착된 HP4291B)를 사용하여 측정되었다. 개발된 인덕터들은 230MHz - 1 GHz의 주파수 영역에서 11 - 39 nH 범위의 인덕턴스 값과 28 - 50 범위의 품질계수 값을 가지는데 이는 전 세계적으로 가장 좋은 칩 인덕터 업체 중의 하나인 CoilCraft/sup Tm/에 의해 생산된 인덕터들의 특성과 유사한 결과를 나타내고 있다. 시뮬레이션 데이터는 개발된 인덕터의 L, Q, C 등의 고주파 특성을 잘 예측하고 있다.

Si RFIC상에서 주기적 구조를 이용한 코프레너형 전송선로의 기본특성연구 (A Study on Basic Characteristics of a Coplanar-type Transmission Line Employing Periodic Structure on Si RFIC)

  • 조한나;박영배;윤영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.964-973
    • /
    • 2008
  • In this study, a short-wavelength coplanar-type transmission line employing periodic ground structure (PGS) was developed for application to miniaturized on-chip passive component on Si Radio Frequency Integrated Circuit (RFIC). The transmission line employing PGS showed shorter wavelength and lower characteristic impedance than conventional coplanar-type transmission line. The wavelength of the transmission line employing PGS structure was 57 % of the conventional coplanar-type transmission line on Si substrate. Using the theoretical analysis. basic characteristics of the transmission line employing PGS (e.g., bandwidth. loss, impedance, and resonance characteristics) were also investigated in order to evaluate its suitability for application to a development of miniaturized passive on-chip components on silicon RFIC. According to the results. the bandwidth of the transmission line employing PGS was more than 895 GHz as long as T is less than 20${\mu}m$, and the resonance characteristic was observed in 1239 GHz, which indicates that the PPGM structure is a promising candidate for application to a development of miniaturized on-chip passive components on Si RFIC.

DNA Chip 제작을 위한 Microarrayer의 개발 (Development of Microarrayer for DNA Chips)

  • 김석열;정남수;이재성;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.899-904
    • /
    • 2003
  • Microarrayer makes DNA chip and microarray that contain hundreds to thousands of immobilized DNA probes on surface of a microscope slide. This paper shows the development results for a printing type of microarrayer. It realizes a typical, low-cost and efficient microarrayer for generating low density microarray. The microarrayer is developed by using a robot of three-axes perpendicular type. It is composed of a computer-controlled three-axes robot and a pen tip assembly. The key component of the arrayer is the print-head containing the tips to immobilize cDNA, genomic DNA or similar biological material on glass surface. The robot is designed to automatically collect probes from two 96-well plates with up to 32 tips at the same time. To prove the performance of the developed microarrayer, the general water types of inks such as black, blue and red. The inks are distributed at proper positions of 96 well plates and the three color inks are immobilized on the slide glass under the operation procedure. As the result of the test, it can be shown that it has sufficient performance for the production of low integrated DNA chip consisted of 96 spots within 1 $cm^2$ area.

  • PDF

플립칩 본딩용 접착제 특성에 미치는 촉매제의 영향 (Effects of Catalysts on the Adhesive Properties for Flip Chip Bonding)

  • 민경은;이준식;유세훈;김목순;김준기
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.681-685
    • /
    • 2010
  • The application of flip chip technology has been growing with the trend of miniaturization of electronic packages, especially in mobile electronics. Currently, several types of adhesive are used for flip chip bonding and these adhesives require some special properties; they must be solvent-free and fast curing and must ensure joint reliability against thermal fatigue and humidity. In this study, imidazole and its derivatives were added as curing catalysts to epoxy resin and their effects on the adhesive properties were investigated. Non-isothermal DSC analyses showed that the curing temperatures and the heat of reaction were dependent primarily on the type of catalyst. Isothermal dielectric analyses showed that the curing time was dependent on the amount of catalysts added as well as their type. The die shear strength increased with the increase of catalyst content while the Tg decreased. From this study, imidazole catalysts with low molecular weight are expected to be beneficial for snap curing and high adhesion strength for flip chip bonding applications.

소수성 상호작용을 이용한 고집적 DNA칩 마이크로어레이의 개발 (Development of High-Intergrated DNA Chip Microarrays by Using Hydrophobic Interaction)

  • 김도균;최용성;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.757-760
    • /
    • 2001
  • We have used the random fluidic self-assembly (RFSA) technique based on the chip pattern of hydrophobic self-assembly layers to assemble microfabricated particles onto the chip pattern. Immobilization of DNA, fabrication of the particles and the chip pattern, arrangement of the particles on the chip pattern, and recognition of each using DNA fluorescence measurement were carried out. Establishing the walls, the arrangement stability of the particles was improved. Each DNA is able to distinguish by using the lithography process on the particles. Advantages of this method are process simplicity, wide applicability and stability. It is thought that this method can be applicable as a new fabrication technology to develop a minute integration type biosensor microarray.

  • PDF

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.

와류발생기를 사용한 전자칩의 냉각촉진에 관한 연구 (A study on the cooling enhancement of electronic chips using vortex generator)

  • 유성연;주병수;이상윤;박종학
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.973-982
    • /
    • 1997
  • Effect of vortex generator on the heat transfer enhancement of electronic chips is investigated using naphthalene sublimation technique. Experiments are performed for a single chip and chip arrays, and shape of vortex generator, position of vortex generator, stream wise chip spacing and air velocity are varied. Local and average heat transfer coefficients are measured on the top surface of simulated electronic chips, and compared with those obtained without vortex generator. In case of a single chip, heat transfer augmentation is seen only on the upstream portion of chip surface, while heat transfer enhancement is found on the whole surface for chip arrays. Rectangular wing type vortex generator is found to be more effective than delta wing.

확장 가능한 32X32 MBAM Neuro-chip의 설계 (Design of Expandable 32x32 MBAM Neuro-chip)

  • 최윤경;박정배;이수영
    • 전자공학회논문지B
    • /
    • 제30B권6호
    • /
    • pp.86-92
    • /
    • 1993
  • In this paper, we present a VLSI chip design of Multi-layer Bidirectionsl Associative Memory with good error-correction performance. The MBAM neural chip utilizes inner product implementation schems with binary storage and analog calculation.. Multi-layer can be constructed by direct cascading of these chips, and the number of neurons is expandable by parallel connection of these chips. We made proto-type chips and interface board to test the expansion. Currently the Chip has 32 input nodes, 32 output nodes, and can store up to 48 patterns, 32x48x2 SRAMs are included in the chip.

  • PDF

Micromachining 기술을 이용한 micro mass flow sensor의 제작 (The fabrication of micro mass flow sensor by Micro-machining Technology)

  • 어수해;최세곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.481-485
    • /
    • 1987
  • The fabrication of a micro mass flow sensor on a silicon chip by means of micro-machining technology is described on this paper. The operation of micro mass flow sensor is based on the heat transfer from a heated chip to a fluid. The temperature differences on the chip is a measure for the flow velocity in a plane parallel with the chip surface. An anisotropic etching technigue was used for the formation of the V-type groove in this fabrication. The micro mass flow sensor is made up of two main parts ; A thin glass plate embodying the connecting parts and mass flow sensor parts in silicon chip. This sensor have a very small size and a neglible dead space. Micro mass flow sensor can fabricate on silicon chip by micro machining technology too.

  • PDF