• 제목/요약/키워드: chip solution

검색결과 275건 처리시간 0.025초

Evaluation of Thermal Deformation in Electronic Packages

  • Beom, Hyeon-Gyu;Jeong, Kyoung-Moon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.251-258
    • /
    • 2000
  • Thermal deformation in an electronic package due to thermal strain mismatch is investigated. The warpage and the in-plane deformation of the package after encapsulation is analyzed using the laminated plate theory. An exact solution for the thermal deformation of an electronic package with circular shape is derived. Theoretical results are presented on the effects of the layer geometries and material properties on the thermal deformation. Several applications of the exact solution to electronic packaging product development are illustrated. The applications include lead on chip package, encapsulated chip on board and chip on substrate.

  • PDF

Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles

  • Nguyen, Ngoc-Viet;Wu, Jian-Sheng;Jen, Chun-Ping
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.317-325
    • /
    • 2018
  • This paper investigated the effects of ionic strength in the medium on a preconcentrator for a protein sample with low concentration. The preconcentration chip was designed and fabricated using a polydimethylsiloxane replica through standard lithophotography. A glass substrate is silanized prior to functionalizing the nanoparticles for self-assembly at a designed region. Due to the overlap of electrical double layers in a nanofluidic channel, a concentration polarization effect can be achieved using an electric field. A nonlinear electrokinetic flow is induced, resulting in the fast accumulation of proteins in front of the induced ionic depletion zone, so called exclusion-enrichment effect. Thus, the protein sample can be driven by electroosmotic flow and accumulated at a specific location. The chip is used to collect fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) diluted in phosphate-buffered saline (PBS) buffer solution. Different concentrations of the buffer media were studied herein. Fluorescence intensity images show that the buffer concentration of 4 mM is more appropriate than all the other ones. The sample of FITC-BSA with an initial concentration of $10{\mu}M$ in the 4 mM PBS solution increases its concentration at the desired region by up to 50 times within 30 min, demonstrating the results in this investigation.

Comparisons of Interfacial Reaction Characteristics on Flip Chip Package with Cu Column BOL Enhanced Process (fcCuBE®) and Bond on Capture Pad (BOC) under Electrical Current Stressing

  • Kim, Jae Myeong;Ahn, Billy;Ouyang, Eric;Park, Susan;Lee, Yong Taek;Kim, Gwang
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.53-58
    • /
    • 2013
  • An innovative packaging solution, Flip Chip with Copper (Cu) Column bond on lead (BOL) Enhanced Process (fcCuBE$^{(R)}$) delivers a cost effective, high performance packaging solution over typical bond on capture pad (BOC) technology. These advantages include improved routing efficiency on the substrate top layer thus allowing conversion functionality; furthermore, package cost is lowered by means of reduced substrate layer count and removal of solder on pad (SOP). On the other hand, as electronic packaging technology develops to meet the miniaturization trend from consumer demand, reliability testing will become an important issue in advanced technology area. In particular, electromigration (EM) of flip chip bumps is an increasing reliability concern in the manufacturing of integrated circuit (IC) components and electronic systems. This paper presents the results on EM characteristics on BOL and BOC structures under electrical current stressing in order to investigate the comparison between two different typed structures. EM data was collected for over 7000 hours under accelerated conditions (temperatures: $125^{\circ}C$, $135^{\circ}C$, and $150^{\circ}C$ and stress current: 300 mA, 400 mA, and 500 mA). All samples have been tested without any failures, however, we attempted to find morphologies induced by EM effects through cross-sectional analysis and investigated the interfacial reaction characteristics between BOL and BOC structures under current stressing. EM damage was observed at the solder joint of BOC structure but the BOL structure did not show any damage from the effects of EM. The EM data indicates that the fcCuBE$^{(R)}$ BOL Cu column bump provides a significantly better EM reliability.

동심축류가 유도되는 미세유체 소자 기반 Collagen Type I 미세섬유의 제작 (Fabrication of Collagen Type I Microfiber based on Co-axial Flow-induced Microfluidic Chip)

  • 이수경;이광호
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권5호
    • /
    • pp.186-194
    • /
    • 2016
  • In this study, a co-axial flow induced microfluidic chip to fabricate pure collagen type I microfiber via the control of collagen type I and Na-alginate gelation process. The pure collagen type I microfiber was generated by selective degradation of Ca-alginate from 'Core-Shell' structured hydrogel microfiber. To make 'Core-Shell' structure, collagen type I solution was introduced into core channel and 1.5% Na-alginate solution was injected into side channel in microfluidic chip. To evaluatethe 'Core-Shell' structure, the red and green fluorescence substances were mixed into collagen type I and Na-alginate solution, respectively. The fluorescence substances were uniformly loaded into each fiber, and the different fluorescence images were dependent on their location. By immoblizing EpH4-Ras and C6 cells within collagen type I and Na-alginate solution, we sucessfully demonstrated the co-culture of EpH4-Ras and C6 cells with 'Core-Shell' like hydrogel microfiber for 5 days. Only to produce pure collagen type I hydrogel fiber, tri-sodium citrate solution was used to dissolve the shell-like Ca-alginate hydrogel fiber from 'Core-Shell' structured hydrogel microfiber, which is an excellent advantage when the fiber is employed in three-dimensional scaffold. This novel method could apply various application in tissue engineering and biomedical engineering.

이완 발진기의 면적 효율성과 주파수 안정성 향상을 위한 기생성분 효과 제거 기법연구 (A Study on Elimination Solution of Parasitic Effect to Improve Area Efficiency and Frequency Stability of Relaxation Oscillator)

  • 이승우;이민웅;김하철;조성익
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.538-542
    • /
    • 2018
  • In order to generate a clock source with low cost and high performance in system on chip(SoC), a relaxation oscillator with stable output characteristics according to PVT(process, voltage and temperature) fluctuation require a low area and a low power. In this paper, we propose a solution to reduce the current loss caused by parasitic components in the conventional relaxation oscillator. Since the slew rate of the bias current and the capacitor are adjusted to be the same through the proposed solution, a relaxation oscillator with low area characteristics is designed for the same clock source frequency implementation. The proposed circuit is designed using the TSMC CMOS 0.18um process. The Simulation results show that the relaxation oscillator using the proposed solution can prevent the current loss of about $279{\mu}A$ and reduce the total chip area by 20.8% compared with the conventional oscillator in the clock source frequency of 96 MHz.

SoC 플랫폼 상에서 임베디드 블루투스 오디오 스트리밍 솔루션 개발 (Development of an Embedded Bluetooth Audio Streaming Solution on SoC Platform)

  • 김태현
    • 정보처리학회논문지A
    • /
    • 제13A권7호
    • /
    • pp.589-598
    • /
    • 2006
  • 본 논문에서는 블루투스 무선 링크를 이용한 실시간 오디오 스트리밍을 위해 DSP를 내장한 SoC (System-on-Chip) 플랫폼 상에서 임베디드 블루투스 솔루션의 개발과 최적화에 대해 설명한다. 개발된 솔루션을 이식성을 고려해서 가상 운영체제 상에서 구현된 임베디드 블루투스 프로토콜 스택, 프로파일과 타겟 멀티미디어 SoC의 특성을 이용한 최적화 기법들을 포함한다. 수요 최적화 기법으로는 SoC 내의 스크래치 패드 메모리의 활용을 통한 메모리 접근 최소화, DSP 연산과 병렬 메모리 접근 명령을 이용한 코덱 구현, 무선 통신 환경을 고려한 동적 오디오 품질 조정 등이 있다. 실험 결과는 본 연구에서 제안한 최적화 기법을 적용한 임베디드 솔루션은 별도의 외부 메모리 없이 고품질 오디오 스트리밍을 지원할 수 있음을 보여준다.

미세 유체 칩 기반의 히알루론산 미세 실의 제작 (Micro-threads of Cross-linked Hyaluronic Acid Hydrogel using a Microfluidic Chip)

  • 이윤경;이광호
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2017
  • The successful synthesis of hyaluronic acid micro-threads is very promising approach for the broad application in tissue engineering such as dermal fillers. Because hyaluronic acid has the excellent biocompatibility and ability to maintain the moisture of up to several hundred times its own weight. In order to generate the hyaluronic acid micro-threads in microfluidic system, we employed two-phase flow microfluidic chip to make a rapid synthesis of the hyaluronic acid hydrogel. Hyaluronic acid was mixed with 0.02N NaOH solution and 1, 4-Butanediol diglycidyl ether (BDDE) solution and then injected into core channel. The ethanol was used for the 3-dimensional micro-thread formation in sheath channel. We manipulated the diameter of HA micro-threads using controlling of flow rates in microfluidic chip, and showed the feasibility of immobilization in HA micro-threads with florescent substances. Also, the generated HA micro-threads were evaluated and showed the suitable properties with tensile strength, bending property, and swelling profiles for dermal fillers. As a result, we suggested an innovative method for microfluidic chip-based HA micro-threads which could safely be applied as dermal filler in tissue engineering.

3-D 유체집속효과와 레이저 중합반응을 이용한 PDA 센서 미세섬유 제작 (On-Chip Fabrication of PDA Sensor Fiber Using Laser Polymerization and 3-D Hydrodynamic Focusing)

  • 유임성;송시몬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2692-2695
    • /
    • 2008
  • Polydiacetylene (PDA) is chemosensor materials that exhibit non-fluorescent-to-fluorescent transition as well as blue-to-red visible color change upon chemical or thermal stress. They have been studied in forms of film or microarray chip, so far. In this paper, we provide a novel technique to fabricate continuous micro-fiber PDA sensor using in-situ laser-polymerization technique and 3-D hydrodynamic focusing on a microfluidic chip. The flow of a monomer solution with diacetylene (DA) monomer is focused by a sheath flow on a 3-D microfluidic chip. The focused flow is exposed to 365 nm UV laser beam for in-situ polymerization which generates a continuous fiber containing DA monomers. Then, the fiber is exposed to 254 nm UV light to polymerize DA monomers to PDA. Preliminary results indicate that the fiber size can be controlled by the flow rates of the monomer solution and sheath flows and that a PDA sensor fiber successively responds to chemical and thermal stress.

  • PDF

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

One-chip 고주파 단말기에의 응용을 위한 고집적 HBT 다운컨버터 MMIC (A Highly Integrated HBT Downconverter MMIC for Application to One-chip RF tranceiver solution)

  • 윤영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.777-783
    • /
    • 2007
  • In this work, a highly integrated downconverter MMIC employing HBT(heterojunction bipolar transistor) was developed for application to one chip tranceiver solution of Ku-band commercial wireless communication system. The downconverter MMIC (monolithic microwave integrated circuit) includes mixer filter. amplifier and input/output matching circuit. Especially, spiral inductor structures employing SiN film were used for a suppression of LO and its second harmonic leakage signals. Concretely, they were properly designed so that the self-resonance frequency was accurately tuned to LO and its second harmonic frequency, and they were integrated on the downconverter MMIC.