• Title/Summary/Keyword: chip antenna

Search Result 193, Processing Time 0.022 seconds

Design of a Surface-mounted Chip Dielectric Ceramic Antenna for PCS Phone (PCS용 표면실장형 칩 유전체 세라믹 안테나 설계)

  • 이종환;우종명;김현학;김경용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.55-62
    • /
    • 2000
  • In this paper, cellularphone antenna was designed to be capable of being mounted on the circuit-board with co-planar feeding method. The designed antenna is fabricated by the following procedure : make the multi-layered dielectric ceramic($\varepsilon_{\tau}$=23) hexahedron($7.5mm\times4.5mm\times0.4mm$) and then produce λ/4 monopole radiation element with helical structure on the surface of the hexahedron. The results are as followings : Returnloss 27.36 dB, -10 dB bandwidth 76 MHz(3.97 %), H-plane average gain -9.43 dBd.

  • PDF

Design of 7 Bands LTCC Front-end Module Embedded LPF (LPF 내장형 7중 대역 LTCC 프런트엔드모듈 설계)

  • Kim, Hyung-Eun;Suh, Young-Kwang;Kim, In-Bae;Mun, Je-Do;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.427-432
    • /
    • 2012
  • In this paper, we have designed and fabricated 7-bands (GSM 850/900, DCS/PCS, and UMTS 3 bands) LTCC front end module (FEM) embedded LPF (low pass filter) to efficiently eliminate harmonics generated in TX path. The proposed FEM is composed of flip-chip typed CMOS SP9T switch to select transceiver signals, dual type SAW filters to receive Rx signals, and 0603 size chip components for the antenna matching and ESD protection. The whole size of FEM is $4.5{\times}3.2{\times}1.2mm^3$. The insertion loss of Tx and Rx ports are measured at 1.7 dB and 4.8 dB, respectively.

Application of Proximity Sensor using Energy Transformation (에너지 변환을 이용한 근접센서에의 적용)

  • Lee, Yong-Jea;Lee, Kyo-Sung;Kim, Do-Hoon;Oh, Se-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.237-240
    • /
    • 2002
  • We have studied a RF energy transformation. In this paper, we introduced proximity sensor using RF energy transformation. We used 125kHz RF signal as carrier frequency and BPSK circuit, PNP proximity sensor and designed circuit to transmit to the reader through the antenna with data which sensor had acquired. Micro-controller, oscillator, power amp, FSK Modulation module are included in the circuit. Max 323 chip is applied to analog switch and used to HYP-30R10NA sensor chip.

  • PDF

Terahertz Transmission Imaging with Antenna-Coupled Bolometer Sensor (안테나 결합형 볼로미터 방식 테라헤르츠 센서를 이용한 이차원 주사 방식의 투과형 테라헤르츠 영상 취득에 관한 연구)

  • Lee, Kyoung Il;Lim, Byung Jik;Won, Jongsuk;Hong, Sung Min;Park, Jae Hyoun;Lee, Dae Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.311-316
    • /
    • 2018
  • An antenna-coupled bolometer-type terahertz sensor was designed, fabricated, evaluated, and utilized to obtain terahertz transmission images. The sensor consists of a thin film bowtie antenna that resonates accordingly in response to an incident terahertz beam, a heater that converts the applied current in the antenna into heat, and a microbolometer that converts the rise in temperature into a change in resistance. The device is fabricated by a bulk micromachining process on a 4-inch silicon wafer. The fabricated sensor chip has a size of $2{\times}2mm$ and an active area of $0.1{\times}0.1mm^2$. The temperature coefficient of resistance (TCR) of the bolometer film (VOx) is 2.0%, which is acceptable for bolometer applications. The output sensor signal is proportional to the power of the incident terahertz beam. Transmission images were obtained with a 2-axis scanning imaging system that contained the sensor. The small active area of the sensor will enable the development of highly sensitive focal plane array sensors in terahertz imaging cameras in the future.

Design of Broadband Microstrip patch Antenna for the GPS (GPS용 광대역 마이크로스트립 패치안테나 설계)

  • Shin, Kyung Hwan;Lee, Yong Chang;Son, Taeho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.128-134
    • /
    • 2018
  • In this paper, two ports feeding a microstrip patch antenna using a quadrature hybrid circuit was proposed to enhance the bandwidth for the global positioning system(GPS). The square patch was designed, and the probe feeding was applied. The quadrature hybrid chip circuit for two-port feeding was designed, and output ports that have a 90-degree phase difference feed to the patch antenna. The designed patch and quadrature hybrid circuit were implemented on an FR4 board, and were combined. The measurement of the bandwidth within a voltage standing wave ratio(VSWR) of 2:1 and axial ratio(AR) in 3dB were wide band as 29% BW (1,230~1,700 MHz) and 15.87% BW (1,400~1,650 MHz), respectively. Antenna gain were measured 2.75dBi at the center frequency.

Design and Fabrication of Location Tracing Antenna for Container Transportation (컨테이너 수송용 위치 추적 안테나 설계 및 제작)

  • Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.119-124
    • /
    • 2014
  • In this paper, A GSm/WCDMA band antenna which can be confirmed positioning information of a container by using the GPS/GLONASS bands on one board and can be sent the positioning information to the mobile communication network in real time is designed. A microstrip patch antennas which supports dual-band (GPS and GLONASS) was optimized. The antenna size is $25{\times}25{\times}5[mm]$. A chip monopole antennas which supports dual-band (GSM and WCDMA) was optimized. The antenna size is $27{\times}8{\times}3.2[mm]$. To amplify the Satellite reception signal level, two-stage low noise amplifier(LNA) was designed. The LNA gain is 27[dB]. The size of Jig for antennas measuring is $100{\times}30{\times}1[mm]$.

Design of Dual Resonant Planar Inverted-F Chip Antenna for WLAN Applications (WLAN용 이중공진 평면 역F 칩 안테나 설계)

  • 이지면;이범선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.311-314
    • /
    • 2002
  • 본 논문에서는 저가의 FR4 칩의 전면과 후면을 이용하여 ISM대역을 만족하는 이중대역 특성의 평면 역F 칩 안테나(PIFcA)를 설계ㆍ분석하였다. 제안된 PIFcA의 크기는 21$\times$5$\times$1mm이고, 10㏈ 반사손실을 기준으로 하여 2.45㎓에 9.54%(2390~2630MHz), 5.775㎓에서 13.89%(5670~6520MHz)의 이중대역 특성을 갖는다. 안테나는 2.45㎓에서 2.2㏈i, 5.77㎓에서 5.2㏈i의 이득특성을 나타내며, 방사패턴은 일반적인 PIFA 방사패턴과 유사하다.

  • PDF

LTCC 적층 필터 동향

  • 황희용
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.50-57
    • /
    • 2003
  • 현재의 LTCC 필터는 주파수 대역이나 서비스의 종류에 따라서 다르지만 대개 LPF, BPF, x-plexer 등 단품에서 Balun, Antenna, Coupler, RF-lC Chip, Matching회로 등과의 복합부품화, 복합모듈화의 형태로 진행되고 있다. LTCC기술을 간단히 요약하고 LTCC 필터 설계의 주요 측면을 살펴본 후, 휴대 단말기 분야뿐 아니라 최근의 2.4 GHz, 5.2 GHz, 5.8 GHz의 WLAN의 LTCC 필터, Waveguide형 LTCC 필터, Module화 등의 예를 보인다. 최신의 시장 예측기관의 조사 자료도 같이 살펴보고 향후 전망을 해 본다.

Design of a Broadband Printing RFID Tag Antenna with Low Performance Degradation Due to Nearby Dielectric Material (근접 유전체에 의한 성능 열화가 적은 광대역 프린팅 태그 안테나 설계)

  • Ji, Sung-Hwan;Han, Won-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.694-700
    • /
    • 2009
  • In this paper, we propose a RFID tag antenna with low performance degradation due to nearby dielectric materials. The proposed antenna is designed to be appropriate for ink printing fabrication. The antenna is designed to operate in UHF band of $860{\sim}960$ MHz. The antenna uses a T-matching network in the middle of the main body and two parasitic patches in vicinity for complex conjugate matching with a commercial tag chip. In addition, the two parasitic patches induce currents at different dielectric constants of nearby dielectric materials. This can minimize the performance degradation due to nearby dielectric materials. The measured results show the half power matching bandwidth from 844 MHT to 1,268 MHz. It exhibits the reading distance of about 3.5 m in free space when the tag antenna is used with the commercial reader antenna (transmitting power of 20 dBm and the reader antenna gain of 6 dBi). When the tag is attached on dielectric materials of wood and FR4, the resulting reading distances are 2.61 m and 2.51 m, respectively.

U-Shaped Broadband RFID Tag Antenna with a Parasitic Element (기생소자를 가지는 U-형태의 광대역 RFID 태그 안테나)

  • Lee, Sang-Woon;Cho, Chi-Hyun;Lee, Kee-Keun;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • In this paper, we proposed a U-shaped broadband RFID tag antenna with a parasitic element operating at UHF band. The proposed tag antenna consists of a U-shaped half wavelength dipole antenna and an inverse U-shaped parasitic element inside the U-shaped dipole antenna. In order to have good impedance matching, the commercial tag chip is attached to the lower center of the rectangular shaped feed. On the condition of VSWR<2, the tag antenna had the measured bandwidth of 4.96 % from 882 to 927 MHz and showed the gain deviation of less than 3.16 dB. On the condition of VSWR<5.8, the tag antenna satisfies the worldwide UHF RFID bandwidth and is showed the gain deviation of less than 5.07 dB. The minimum gain deviation characteristic appears near the center of bandwidth which minimizes variation of gain deviation characteristic with respect to the frequency.