• Title/Summary/Keyword: chicken muscle

Search Result 212, Processing Time 0.03 seconds

EFFECT OF ANTE-MORTEM STRESS ON POST-MORTEM CHANGES OF TITIN I (α-CONNECTIN) INTO TITIN II (β-CONNECTIN) AND NEBULIN IN THE LIGHT AND DARK MUSCLE OF TAIWAN COUNTRY CHICKEN

  • Lin, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.405-411
    • /
    • 1994
  • Purified myofibrils were prepared from ante-mortem stress and control lots of Taiwan country chicken breast and thigh muscles at death and afler storage at $4^{\circ}C$ for 0, 1, 2, 3, and 7 days post-mortem. Sodium dodecyl sulfate polycrylamide gel electrophoresis (3.2%) and densitometer were used to examine the effect of ante-mortem stress and control storage of muscle on titin and nebulin. Results indicated that titin and nebulin were more rapidly degraded in the control and the ante-mortem stress light muscles than in the control and ante-mortem dark muscles of Taiwan country chicken. In contrast, nebulin was shown to be more resistance to degradation in the ante-mortem stress dark muscle than in the control light muscle.

Comparison of Physicochemical Characteristics of Hot-boned Chicken Breast and Leg Muscles during Storage at 20℃

  • Yu, Long-Hao;Lee, Eui-Soo;Chen, Hong-Sheng;Jeong, Jong-Youn;Choi, Yun-Sang;Lim, Dong-Gyun;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.676-683
    • /
    • 2011
  • The aim of this study was to compare the physicochemical changes of hot-boned chicken breast and leg muscles. Chicken breast and leg muscles from 56 broilers were excised within a 15 min post-mortem (PM) and stored at $20^{\circ}C$. Physicochemical traits were determined at 0.5, 6, 12, and 24 h PM. The ultimate pH of leg muscle was higher than that of breast muscle (p<0.05). The content of glycogen in the breast muscle was relatively higher than that in the leg muscle until 6 h PM (p<0.05). R-values showing rigor mortis of breast and leg muscles were completed after or before 6 h PM. Breast muscle had less cooking loss than leg muscle (p<0.05). Drip loss did not significantly differ between breast and leg muscles with the exception of that at 6 h PM. The sarcomere length of leg muscle was relatively longer than that of breast muscle (p<0.05). The MFI of leg muscle was significantly lower than that of breast muscle (p<0.05). The shear force of leg muscle was lower than that of breast muscle at 6 and 12 h PM (p<0.05); however, that of both muscles did not significantly differ at 24 h PM.

Relationship of IGF-I mRNA Levels to Tissue Development in Chicken Embryos of Different Strains

  • Kita, K.;Noda, C.;Miki, K.;Kino, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1653-1658
    • /
    • 2000
  • Insulin-like growth factor-I (IGF-I) mRNA levels in the eyes, heart, liver and breast muscle removed from dwarf egg-type, normal egg-type and normal meat-type chicken embryos at 7, 14 and 20 days of incubation were measured. There was no influence of chicken strain on IGF-I gene expression in the eyes and liver. The IGF-I gene expression in eyes increased significantly along with the incubation period. In the liver, IGF-I gene expression at 20 days of incubation was significantly higher than that at 14 days of incubation. In the muscle, the lowest value for IGF-I gene expression was observed in meat-type chicken embryos. Regression analysis revealed that IGF-I gene expression was significantly correlated to the weights of the eyes and liver, but not the muscle. We conclude that there is little influence of strain on tissue IGF-I gene expression in chicken embryos during incubation but that tissue development in chicken embryos is nevertheless at least partly regulated by the change in IGF-I gene expression.

Identification of the Gene Responsible for Chicken Muscular Dystrophy

  • Matsumoto, Hirokazu;Sasazaki, Shinji;Mannen, Hideyuki
    • Korean Journal of Poultry Science
    • /
    • v.38 no.2
    • /
    • pp.145-154
    • /
    • 2011
  • By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

Molecularly Imprinted Solid-Phase Extraction for Determination of Enrofloxacin and Ciprofloxacin in Chicken Muscle

  • Yan, Hong-Yuan;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1173-1178
    • /
    • 2008
  • A simple and sensitive high-performance liquid chromatographic method was developed for the simultaneous identification of enrofloxacin and its active metabolite ciprofloxacin in chicken muscle. Norflorxacin imprinted polymers synthesized in water-containing systems show high selectivity to enrofloxacin and ciprofloxacin in an aqueous environment. Using these water-compatible imprinted polymers as selective adsorbents in the solid-phase extraction of enrofloxacin and ciprofloxacin from chicken samples, the remaining biological matrix could be quickly washed out from the imprinted column while enrofloxacin and ciprofloxacin were selectively retained and enriched. Analytical separation was performed on a $C_{18}$ column using acetonitrile-water as a mobile phase and fluorescence detection. Good linearity was obtained from 0.8 to 500 ng/g (r > 0.998) with relative standard deviation of less than 3.9%. The mean recoveries of enrofloxacin and ciprofloxacin from chicken muscle were 80.6-94.5% and 77.8-91.8% at three different concentrations. The limits of determinations based on S/N=3 were 0.07 ng/g and 0.09 ng/g, which are below the maximum residue limits established in many countries.

Structure and Expression of the Chicken Myostatin Gene

  • Kim, Jin-Nam;Moon, Je-Sung;Lee, Eun-Young;Hwang, Kyu-Choon;Tae Hun;Kim, Ki-Dong;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.11a
    • /
    • pp.78-80
    • /
    • 2000
  • A new murine TGF-$\beta$ family member, myostatin(growth/differentiation factor-8) is expressed specifically in developing and adult skeletal muscle and may be a negative regulator of skeletal muscle development. This study aims at characterization and identification of genomic organization of chicken myostatin gene. In thi study, we identified the genomic organization and sequence of chicken myostatin gene. Results of RT-PCR and Northern blots from various tissues showed different mRNA expression levels in developmental stages of chick embryos and demonstrated strong expression of myostatin mRNA in skeletal muscle. These facts suggest that chicken myostatin gene would play an important role not only in skeletal muscle cell but also in other tissues.

  • PDF

Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

  • Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Yeo, Eui-Joo;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.577-584
    • /
    • 2015
  • This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.

Comparison of Myosin ATPase Activities from Red Muscle and White Muscle (Red muscle myosin과 White muscle myosin의 생물활성의 비교)

  • Shin, Wan-Chul;Oh, Doo-Whan;Jhin, Hong-Seung;Kim, Kee-Tae;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.181-186
    • /
    • 1986
  • Myosin were prepared from red muscle and white muscle, and their ATPase activities were compared. Ca-ATPase activity of bovine myosin from red muscle was higher than that of myosin from white muscle, while Ca-ATPase activity of chicken myosin from red muscle differed hardly from that of myosin from whitemuscle. Atso EDTA-ATPase activity of bovine red muscle myosin was higher than that of white muscle myosin ,although EDTA-ATPase activity of chicken myosin from red muscle differed hardly from that of white muscle myosin. When myosins were treated with trypsin, bovine myosin from white muscle was hydrolysed moreeasily than red muscle myosin was. Chicken myosin from red muscle , however, was hydrolysed by trypsin more easily than white muscle myosin was.

  • PDF

DNA Sequence and Characteristics of Muscle Development cDNA Clone Derived from Korean Native Chicken (재래닭의 근육 성장과 관련되는 cDNA Clone의 염기서열 및 특성)

  • Sun, S.S.;Myung, K.H.;Kuk, K.;Kim, N.O.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.4
    • /
    • pp.249-254
    • /
    • 2006
  • This experiment was conducted to examine the effective DNA related with muscle growth of Korean native chicken. cDNA library was constructed with mRNA subtraction from Korean native chicken to Cornish. Total mRNA was purified from pectoralis muscle of adult chicken. Five clones were compared their DNA sequence and characteristics based on GenBank. Clone NDS-1 (618nt) was low homology (10%) with other species, but it is closely related with triosephosphate isomerase which is play an important role in glycolysis. Clone NDS-6 (651nt) is corresponding to glyceraldehyde-3-phosphate dehydrogenase. These two clones are encoding to enzymes in key role in glycolysis. However, other three clones (NDS-2, NDS-10, NDS-12) have low homology with other species about 5.0%. These clones were not similar with any other eukaryotics. Therefore, three clones (NDS-2, NDS-10, NDS-12) are high possibility of specific DNA for muscle growth in Korean native chicken.

Effects of the Protein Fraction of Panax ginseng on Primary Cultured Chicken Skeletal Muscle Cells (인삼 단백분획물이 일차배양한 계배의 근육세포에 미치는 영향)

  • Park, Mi-Jung;Song, Jin-Ho;Lee, Heun-Pa;Kim, Young-Choong
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.3
    • /
    • pp.210-216
    • /
    • 1990
  • Effects of the protein fraction of Panax ginseng on chicken embryonic skeletal muscle cells cultured with a decfiient medium were studied. The protein fraction was further fractionated into four groups according to the molecular weight; larger than 10,000 dalton(fraction A), between 5,000 and 10,000 dalton(fraction B), between 1,000 and 5,000 dalton(fraction C), between 500 and 1,000 dalton(fraction D). According to the microscopic observation, all four protein fractions at the concentration of $10{\sim}100{\;}{\mu}g/ml$ showed the tendency to stimulate the growth and differentiation of the muscle cells. The activity of acetylcholinesterase in muscle cells was significantly elevated by the protein fraction A at the concentration of $100{\mu}{\;}g/ml$. Protein fractions B,C and D significantly enhanced the synthesis of RNA in the muscle cells. The synthesis of DNA in muscle cells was significantly enhanced by protein fractions A,B and C.

  • PDF