• Title/Summary/Keyword: chemosensitivity

Search Result 71, Processing Time 0.03 seconds

CHEMOSENSITIVITY OF CANCER CELLS TO ANTICANCER DRUGS USING DYE EXCLUSION ASSAY, [3H] THYMIDINE INCORPORATION, AND CLONOGENIC ASSAY (두경부악성종양세포주의 항암제감수성 시험에 관한 실험적 연구)

  • Jin, Woo-Jeong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.1
    • /
    • pp.35-48
    • /
    • 1993
  • The in vitro predictive tests in cancer chemotherapy of cancer cell lines to anticancer drugs were determined using novel dye exclusion assay [NDEA], [3H] thymidine incorporation, and clonogenic assay [CA>. Antitumor effect of Bleomycin, Cis-platin, Vinblastine, Methotrexate to HEp-2, B16 cell lines using rapid assays was compared with [CA> in this study. In dye exclusion assay of B l6 cell line, cancer cells were sensitive to Bleomycin at all concentrations, to Vinblastine at the level of peak plasma concentration [PPC], ${\times}1/10$ [PPC](P<0.05). And Bleomycin revealed relatively good cytotoxicity than that of CDDP and vinblastine at ${\times}10$[PPC], (P<0.05). HEp-2 cells were resistive to methotrexate at the level of ${\times}100$[PPC] (P<0.05) In [3H] thymidine incorporation assay, B 16 cells were sensitive to Bleomycin, CDDP, Vinblastine at the level of [PPC], ${\times}10$ [PPC](P<0.01). Dose-dependent drugs of bleomycin, CDDP were more sensitive than Vinblastine at high concentration (P<0.05). In clonogenic assay, HEp-2 cell line was sensitive to three drugs of all concentrations except ${\times}10$ [PPC] of CDDP. B 16 cell line was sensitive to all drugs(P<0,01). In comparison of chemosensitivity tests among three assays, the results were correlated(${\gamma}=0.99$, P<0.05).

  • PDF

Resveratrol and clofarabine induces a preferential apoptosis-activating effect on malignant mesothelioma cells by Mcl-1 down-regulation and caspase-3 activation

  • Lee, Yoon-Jin;Lee, Yong-Jin;Lee, Sang-Han
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.166-171
    • /
    • 2015
  • We previously demonstrated that resveratrol and clofarabine elicited a marked cytotoxicity on malignant mesothelioma (MM) MSTO-211H cells but not on the corresponding normal mesothelial MeT-5A cells. Little is known of the possible molecules that could be used to predict preferential chemosensitivity on MSTO-211H cells. Resveratrol and clofarabine induced downregulation of Mcl-1 protein level in MSTO-211H cells. Treatment of cells with cycloheximide in the presence of proteasome inhibitor MG132 suggested that Mcl-1 protein levels were regulated at the post-translational step. The siRNA-based knockdown of Mcl-1 in MSTO-211H cells triggered more growth-inhibiting and apoptosis-inducing effects with the resultant cleavages of procaspase-3 and its substrate PARP, increased caspase-3/7 activity, and increased percentage of apoptotic propensities. However, the majority of the observed changes were not shown in MeT-5A cells. Collectively, these studies indicate that the preferential activation of caspase cascade in malignant cells might have important applications as a therapeutic target for MM.

Levels of Viral Glycoprotein Provide a Measure of Modulated Chemotherapeutic Effect

  • Shin, Jaeyong;Yoon, Yeon-Sook;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 1999
  • A chemosensitivity assay with small replicate Mm5mt/cl C3H mammary tumor cell cultures was developed to determine whether changes in viral antigen expression and release into culture fluids could be utilized as an in vitro measure of modulating drug effect. The 52,000 MW viral envelope glycoprotein (gp52) of the mouse mammary tumor virus (MMTV) was measured in culture fluids of control and drug-treated cultures while cell density was simultaneously determined by cell staining and OD 664 nm determination. While extra-cellular gp52 levels and cell density progressively increased over 72 hours for control cultures, declines in both parameters provided dual measures of effect for combination [N(phophonacetyl-L-aspartic acid)+5-fluorouracil], combination 〔N(phophonacetyl-L-aspartic acid )+5-fluoro-5'-deoxyuridine〕and single component treatment of this combination. At each treated time point, thesecombinations begin to produce a greater decline in both cell density and gp52 levels as compared to single drug treatments. These results indicate that N(phopho-nacetyl-L-aspartic acid) in combination can enhance the effectiveness of single drug.

  • PDF

CHEMOSENSITIVITY TEST OF HUMAN OSTEOSARCOMA AND EPIDERMOID CARCINOMAS USING MTT ASSAY (MTT법을 이용한 사람 골육종과 상피암 세포주들에 대한 항암제 감수성 검사)

  • Park, Sung-Oh;Shin, Hyo-Keun;Kim, Oh-Whan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.13 no.4
    • /
    • pp.391-404
    • /
    • 1991
  • Three anticncer agents which are different in time or dosage dependence as well as in phase specificity, namely mitomycin and adriamycin from natural products, and widely different cancer cell lines_Four epidermoid carcinomas originated from larynx, cervix, skin and gut were used toghether with one osteosarcoma as the target cell of single and combined administration of anticancer drugs. Semiautomated tetrazolium dye assay(MTT) appears to offer an attractive option for chemosensitivity of head and neck cancers since it is a simple, valid and inexpensive method of assessing chemosensitivity for large samples in a short time. The results obtained form this study were as follows. 1. Good correlations were obtained with the results of the MTT test and those of $^3H$ thymidine uptake assay. 2. $LD_{50}$ values of HIST and St.Ca. which showed relatively high doubling time on adriamycin were $30{\mu}g/ml$ and $15{\mu}g/ml$ while those of HeLa, Hep-2 and KHOS/NP were $2.1{\mu}g/ml$, $4.8{\mu}g/ml$, and $6.8{\mu}g/ml$ respectively. 3. The $LD_{50}$ value of 5-FU on five cancer cells were very high ranging from 15mg/ml to almost indefinite number, which means 5-FU is very resistant to epidermoid carcinomas or osteosarcoma examined in this study. 4. Mitomycin was relatively effective showing 80% cancer killing effect on HeLa, 70% on St. Ca. and 50% on Hep-2 at the high concentrations used. 5. Adriamycin was the most effective showing 90% cancer cell killing effect on KHOS/NP, 98% on HeLa, 80% both on Hep-2 and St. Ca. The least susceptible cancer cells toward adriamycin was HIST having only 55% cell killing effect at the high cincentration. 6. Combined therapy of adriamycin and 5-FU was more effective than single administration in all the cases examined. Most effective synergism was observed on St. Ca. at the low concentration, showing 21 times higher than each single administration.

  • PDF

Effect of Extracellular Cations on the Cehmotherapeutic Efficacy of Anticancer Drugs

  • Park, Sun-Mi;Han, Sang-Bae;Hong, Dong-Ho;Lee, Chang-Woo;Park, Se-Hyung;Jeon, Young-Jin;Kim, Hwan-Mook
    • Archives of Pharmacal Research
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • Cancer development and the efficiency of chemotherapy relies on the patients calcium-related pathological status such as hyper- or hypocalcemica. In the present study, we investigated the effect of extracellular cations such as calcium and magnesium on the therapeutic efficacy of antitumor drugs. The analytic parameters used were cellular drug uptake/excretion and the chemosensitivity of the human breast cancer cell lines, MCF7 and MCF7/ADR. Both calcium and magnesium ions decreased the membrane permeability of cancer cells, which was determined bycell size analysis. These divalent ions also lowered the drug uptake and the cytoplasmic levels of rhodamine 123 and adriamycin, suggesting that they might interfere with the diffusion of these drugs by modifying the physical properties of the cytoplasmic membrane. The acute cytotoxicity of adriamycin after a short period of incubation correlated with changes in its cytoplasmic level. Our results indicate that these extracellular cations might play an important role in the therapeutic activities of anticancer drugs in cancer patients. These results also provide insight a new aspect of chemotherapy, because they suggest that the therapeutic dose of anti-cancer drugs should be modified in cancer-bearing patients presenting with abnormal blood calcium levels.

  • PDF

Antitumor Effect and the Change of Chemosensitivity of Chitosan in Human Lung Cancer Cell Line (인체 폐암세포주에 대한 키토산의 항암효과와 항암제 감수성에 미치는 영향)

  • 노숙령
    • Journal of Nutrition and Health
    • /
    • v.31 no.4
    • /
    • pp.739-746
    • /
    • 1998
  • This study was designed to investigated the antitumor effect and change chemosensitivity of chitosan in 2 kinds of humen lung cancer cell lines(NCI-H522, NCI-H596). To evaluate the antitumor effect and synergistic effectof chomosensitivity, MTT assay was used in vitro. then anticancer drugs used were 챤-platin , ectoposide, and adrimycin. The results of this study were as follows; Chitosan shwoed in antitumor effect on both NCI-H522 and NCI-H596. The lung cancer viability percent for NCI-H522 and NCL-H596 showed at the lowest levels of 5.31 and 5.33% when the concentration of chitosan was 25mg/$m\ell$ media and the exposure time of chitosan was 72 hours. ID50 value of chitosan on both NCI-H522 and NCI-H596 showed at the lowest levels of 14.07, 11.68 mg/$m\ell$ media when the exposure time of chitosan was 72 hours. the synergistic effect of chomosensitivity was better in NCI-H596 than in NCI0H522 . When the synergistic effect of chomosensitivity was shown according to the kind of the anticancer drugs, in case of NCI-H522 , in the concentration of 100$\mu\textrm{g}$/$m\ell$, ectoposide showed the highest synergistic effect of chomosensitivity and then was adrimycin In case of NCI-H596, in the concentration of 100$\mu\textrm{g}$/$m\ell$,, the order of the synergistic effect of chomosensitivity was ectoposide>adrimycin>cis-platin and in the concentration of 10$\mu\textrm{g}$/$m\ell$, ectoposide>cis-platin >adrimycin. It is concluded that chitosan is an active antitumor agent and is increased chomosensitivity though there is difference according to the kind and the concentration of anticancer drugs. But to be sued to lung cancer theraphy, further studies on toxicity, the mechanism of action, animal experiment are wanted.

  • PDF

Overexpression of CXCR4 is significantly associated with cisplatin-based chemotherapy resistance and can be a prognostic factor in epithelial ovarian cancer

  • Li, Jia;Jiang, Kuo;Qiu, Xiuchun;Li, Meng;Hao, Qiang;Wei, Li;Zhang, Wei;Chen, BiLiang;Xin, Xiaoyan
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • The chemokine receptor 4 (CXCR4) plays an important role in the growth, angiogenesis and metastasis of various cancers, including epithelial ovarian cancer (EOC). However, the correlation between CXCR4 and the clinical response of EOC patients to chemotherapy remains unknown. 124 EOC patients were recruited to assess the relationship between CXCR4 and the response to cisplatin-based chemotherapy. The results showed that patients with a higher CXCR4 expression had a significantly lower chemosensitivity, a poorer progression-free survival and a lower overall survival than those with lower CXCR4 expression. In addition, knockdown of CXCR4 by small interfering RNA suppressed cell proliferation and resulted in G1/S arrest, increased apoptosis and chemosensitivity in both cisplatin-sensitive A2780 cells and cisplatin-resistant cell A2780/cis in vitro. Our data suggest that CXCR4 is one of the key molecules in cisplatin-based chemotherapy for EOC patients and that CXCR4 inhibition is a potential strategy to address the chemoresistance of EOC.

RNA Interference-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth, Induces Apoptosis, and Increases the Chemosensitivity to 5-Fluorouracil in Renal Cancer Caki-1 Cells

  • Wang, Peng;Yin, Bo;Shan, Liping;Zhang, Hui;Cui, Jun;Zhang, Mo;Song, Yongsheng
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.857-864
    • /
    • 2014
  • Astrocyte elevated gene-1 (AEG-1) is a recently discovered oncogene that has been reported to be highly expressed in various types of malignant tumors, including renal cell carcinoma. However, the precise role of AEG-1 in renal cancer cell proliferation and apoptosis has not been clarified. In this study, we transfected the renal cancer cell line Caki-1 with a plasmid expressing AEG-1 short hairpin RNA (shRNA) and obtained cell colonies with stable knockdown of AEG-1. We found that AEG-1 down-regulation inhibited cell proliferation and colony formation and arrested cell cycle progression at the sub-G1 and G0/G1 phase. Western blot analysis indicated that the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E were significantly reduced following AEG-1 down-regulation. In addition, AEG-1 knockdown led to the appearance of apoptotic bodies in renal cancer cells, and the ratio of apoptotic cells significantly increased. Expression of the antiapoptotic factor Bcl-2 was dramatically reduced, whereas the pro-apoptotic factors Bax, caspase-3 and poly (ADPribose) polymerase (PARP) were significantly activated. Finally, AEG-1 knockdown in Caki-1 cells remarkably suppressed cell proliferation and enhanced cell apoptosis in response to 5-fluorouracil (5-FU) treatment, suggesting that AEG-1 inhibition sensitizes Caki-1 cells to 5-FU. Taken together, our data suggest that AEG-1 plays an important role in renal cancer formation and development and may be a potential target for future gene therapy for renal cell carcinoma.

Experimental Study on the Radiosensitivity and Chemosensitivity of A-431 Cell Line (A-431 세포주의 방사선 및 항암제의 감수성에 관한 실험적 연구)

  • Hong Seong-Woo;Choi Eun-Suk;Koh Kwang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.327-339
    • /
    • 1999
  • Objectives: The purpose of this study was to aid in the prediction of tumor cell tolerance to radiotherapy and/or chemotherapy. Material and Methods: Human epidermoid carcinoma A-431 cell lines were irradiated by 2, 4, 6, 8, 10Gy at a dose rate of 210cGy/min using /sup 60/Co Irradiator ALDORADO 8 and then were exposed to bleomycin or cisplatin at concentration of 2㎍/㎖ for 1 hour. The viable cells were determined for each radiation dose and/or each drug at the 4th day and cell surviving curves were obtained using semiautomated MTT assay. Results: The surviving fraction after irradiation of 2Gy was 0.99, and there was not significant difference of surviving fraction in comparison with the control group on A-431 cell line(P>0.05). But there were significant differences of surviving fractions at doses of 4, 6, 8, 10Gy in comparison with the control group(P<0.05). The cytotoxicity of bleomycin or cisplatin was significantly different in comparison with the control group on A-43l cell line (P<0.05). And the cytotoxicity of cisplatin was greater than that of bleomycin on A-431 cell line (P<0.05). There were significant differences of surviving fractions after irradiation of 2, 4, 6, 8, 10Gy with bleomycin or cisplatin in comparison with each group of irradiation only on A-431 cellline(P<0.05). There were significant differences of surviving fractions between the groups of irradiation with bleomycin and cisplatin at doses of 2, 4Gy(P<0.05), but there were not significant differences of surviving fractions at doses of 6, 8, 10Gy on A-431 cell line (P>0.05).

  • PDF

Augmentation of the Cytotoxic Effects of Anticancer Drugs by $(\pm)$-ar-Turmerone and Extracts of the Lithosperma and Scutellaria Roots against Human Leukemia Cell Lines (백혈병 세포주에 대한 $(\pm)$-ar-Turmerone, 자근 및 황금추출물에 의한 항암제의 세포독성 증강효과)

  • 이윤영;유관희;김삼용;안병준
    • YAKHAK HOEJI
    • /
    • v.35 no.3
    • /
    • pp.203-215
    • /
    • 1991
  • Using the calorimetric [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT)assay, we evaluated the chemosensitivity of 8 anticancer drugs{vincristine(VCR), vinblastine(VBL), adriamycin(ADR), cisplatin(CPDD), etoposide(VP-16), cytosine arabinoside(ara-C), bleomycin (Bleo) and cyclophosphamide(CYC)} and the cytotoxicity-enhancing effects of ($\pm$)-ar-turmerone and the extracts of the crude drugs {Lithospermum eythrorhizon(LE) and Scutellaria baicalensis (SB)} on the above mentioned anticancer drugs against HL-60 and KG-1 cells among 8 anticancer drugs, VCR, VBL, ADR, and CPDD inhibited the growth of both cell lines by more than 50%, while VP-16, ara-C, Bleo, and CYC were less effective. ($\pm$)-ar-Turmerone had significant inhibitory effects against both cell lines, showing the ID$_{50}$ values of 11.730 $\mu\textrm{g}$/ml and 0.292 $\mu\textrm{g}$/ml for HL-60 and KG-1 cells. respectively. But the extracts of LE and SB roots showed no significant cytotoxic effects. According to ID$_{50}$ values, the cytotoxicities of VCR, VBL and ADR against HL-60 were enhanced two, eight and three times by mixing ($\pm$)-ar-turmerone, five, seven and three times by adding the extract of LE root, and twenty, six and three times by mixing the extract of SB root, respectively. The cytotoxicities of the above mentioned drugs against KG-1 cell were enhanced two, seven and three times by mixing ($\pm$)-ar-turmerone, two, three and three times by combining wilth the extract of LB root, and two, five and two times by adding the extract of SB root, respectively. The cytotoxicity-potentiating effects of ($\pm$)-ar-turmerone and the extracts of LE and SB roots against HL-60 cell were greater than KG-1 cell.

  • PDF