• Title/Summary/Keyword: chemical-vapor deposition

Search Result 2,456, Processing Time 0.034 seconds

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film

  • Bogdanowicz, Robert;Sobaszek, Michał;Ficek, Mateusz;Gnyba, Marcin;Ryl, Jacek;Siuzdak, Katarzyna;Bock, Wojtek J.;Smietana, Mateusz
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2015
  • The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K3[Fe(CN)6] in 0.5 M Na2SO4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.

Effects of hydrogen and ammonia partial pressure on MOCVD $Co/TaN_x$ layer for Cu direct electroplating

  • Park, Jae-Hyeong;Mun, Dae-Yong;Han, Dong-Seok;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.84-84
    • /
    • 2012
  • 소자가 고집적화 됨에 따라, 비저항이 낮고 electro migration (EM), Stress Migration (SM) 특성이 우수한 구리(Cu)를 배선재료로서 사용하고 있다. 그러나, 구리는 Si과 $SiO_2$의 내부로 확산이 빠르게 일어나, Si 소자 내부에 deep donor level을 형성하고, 누설 전류를 증가시키는 등 소자의 성능을 저하시킬 수 있는 문제점을 가지고 있다. 그러나, electroplating 을 이용하여 증착한 Cu 박막은 일반적으로 확산 방지막으로 쓰이는 TiN, TaN, 등의 물질과의 접착 (adhesion) 특성이 나쁘다. 따라서, Cu CMP 에서 증착된 Cu 박막의 벗겨지거나(peeling), EM or SM 저항성 저하 등의 배선에서의 reliability 문제를 야기하게된다. 따라서 Cu 와 접착 특성이 좋은 새로운 확산방지막 또는 adhesion layer의 필요성이 대두되고 있다. 본 연구에서는 이러한 Cu 배선에서의 접착성 문제를 해결하고자 Metal organic chemical vapor deposition (MOCVD)을 이용하여 제조한 코발트(Co) 박막을 $Cu/TaN_x$ 사이의 접착력 개선을 위한 adhesion layer로 적용하려는 시도를 하였다. Co는 비저항이 낮고, Cu 와 adhesion이 좋으며, Cu direct electroplating 이 가능하다는 장점을 가지고 있다. 하지만, 수소 분위기에서 $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) 전구체에 의한 MOCVD Co 박막의 경우 탄소, 산소와 같은 불순물이 다량 함유되어 있어, 비저항, surface roughness 가 높아지게 된다. 따라서 구리 전착 초기에 구리의 핵 생성(nucleation)을 저해하고 핵 생성 후에도 응집(agglomeration)이 발생하여 연속적이고 얇은 구리막 형성을 방해한다. 이를 해결하기 위해, MOCVD Co 박막 증착 시 수소 반응 가스에 암모니아를 추가로 주입하여, 수소/암모니아의 분압을 1:1, 1:6, 1:10으로 변화시켜 $Co/TaN_x$ 박막의 특성을 비교 분석하였다. 각각의 수소/암모니아 분압에 따른 $Co/TaN_x$ 박막을 TEM (Transmission electron microscopy), XRD (X-ray diffraction), AES (Auger electron spectroscopy)를 통해 물성 및 조성을 분석하였고, AFM (Atomic force microscopy)를 이용하여, surface roughness를 측정하였다. 실험 결과, $Co/TaN_x$ 박막은 수소/암모니아 분압 1:6에서 90 ${\mu}{\Omega}-cm$의 낮은 비저항과 0.97 nm 의 낮은 surface roughness 를 가졌다. 뿐만 아니라, MOCVD 에 의해 증착된 Co 박막이4-6 % concentration 의 탄소 및 산소 함량을 가지는 것으로 나타났고, 24nm 크기의 trench 기판 위에 약 6nm의 $Co/TaN_x$ 박막이 매우 균일하게 형성된 것을 확인 할 수 있었다. 이러한 결과들은, 향후 $Co/TaN_x$ 박막이 Cu direct electroplating 공정이 가능한 diffusion barrier로서 성공적으로 사용될 수 있음을 보여준다.

  • PDF

COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE

  • KIM, BONG GOO;YEO, SUNGHWAN;LEE, YOUNG WOO;CHO, MOON SUNG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.608-616
    • /
    • 2015
  • The migration of silver (Ag) in silicon carbide (SiC) and $^{110m}Ag$ through SiC of irradiated tristructural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is $247.4kJ{\cdot}mol^{-1}$ from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), $125.3kJ{\cdot}mol^{-1}$ from integral release experiments (annealing of irradiated TRISO fuel), $121.8kJ{\cdot}mol^{-1}$ from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and $274.8kJ{\cdot}mol^{-1}$ from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a microstructural change caused by neutron irradiation during operation has to be fully considered.

Hybrid Water Treatment of Carbon Ultrafiltration Membrane and Polypropylene Beads Coated with Photocatalyst: Effect of Organic Materials, Photo-oxidation, and Adsorption in Water Back-flushing (탄소 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물 및 광산화, 흡착의 영향)

  • Park, Jin Yong;Jung, Chung Ho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.359-368
    • /
    • 2012
  • For hybrid water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively. As results of treatment portions of UF, UF + $TiO_2$, and UF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were 2.5% and 12.3%, respectively. Compared with the previous results, treatment portions of humic acid by adsorption and photo-oxidation were different depending on membrane material and pore size. As simplified the process, the membrane fouling resistance after 180 minutes' operation ($R_{f,180}$) increased and the final permeate flux decreased a little.

A Study of Electrical Anisotropy of n-type a-plane GaN films grown on $\gamma$-plane Sapphire Substrates ($\gamma$-plane 사파이어 기판 위에 성장한 무분극 ${alpha}$-plane GaN 층의 전기적 비등방성 연구)

  • Kim, Jae-Bum;Kim, Dong-Ho;Hwang, Sung-Min;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.1-6
    • /
    • 2010
  • We report on the electrical properties of Ti/Al/Ni/Au (20 nm/ 150 nm/ 30 nm/ 100 nm) Ohmic contacts and the anisotropic conductivity of n-type ${\alpha}$-plane ([11-20]) GaN grown on $\gamma$-plane ([1-102]) sapphire substrates. The Ti/Al/Ni/Au Ohmic contacts and their sheet resistances are characterized by using the transfer length method (TLM) as a function of azimuthal angles. It is found that the specific contact resistance does not depend on the axis orientation and there are significant electrical anisotropy in ${\alpha}$-plane GaN films on $\gamma$-plane sapphire substrates, and the sheet resistance varies with azimuthal angles. The sheet resistance values in the direction parallel to m-axis [1-100] are 25% ~ 75% lower than those parallel to c-axis [0001] directions. Thus, Basal stacking faults (BSFs) are offered as a feasible source of the anisotropic mobility in defected m-axis direction because the band-edge discontinuities owing to the differential band gap structure.

A STUDY ON THE RESISTANCE OF WEAR AND CYTOTOXICITY OF THE TITANIUM SURFACE AFTER FILM DEPOSITIONS (박막증착시 티타늄 표면의 마손저항도와 세포독성에 관한 연구)

  • Kim Hyung-Woo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.84-95
    • /
    • 2001
  • Titanium is widely used in dentistry for its low density, high strength, fatigue resistance, corrosion resistance, and biocompatibility. But it has a tendency of surface damage under circumstance of friction and impact for its low hardness of the surface. Coating is one of methods fir increasing surface hardness. Its effect is to improve surface physical characteristics without change of titanium. Diamond-like carbon and titanium nitride are known for its high hardness of the surface. So that this study was aimed at the wear test and the cytotoxicity test of the commercially pure titanium and Ti-6Al-4V alloy which were deposited by diamond-like carbon film or titanium nitride film to acertain improvement of the surface hardness and the biocompatibility. A disk (25mm diameter, 2mm thickness) was made of commercially pure titanium and Ti-6Al-4V alloy and these substrates were deposited by diamond-like carbon film or titanium nitride film. Diamond-like carbon film was deposited by the method of radiofrequency plasma assisted chemical vapor deposition and titanium nitride film was deposited by the method of reactive arc ion plating. Then these substrates were tested about wear characteristics by the pin-on-disk type wear tester in which ruby ball was used as a wear causer under the load of 32N, The fracture cycles were measured by rotating the substrates until their films were fractured. The wear volume was measured after 150 cycles and 3,000 cycles using surface profiler. The cytotoxicity test was peformed by the method of the MTT assay. The results were as follows : 1. In the results of the wear volume test, commercially pure titanium and titanium alloy which were coated by diamond-like carbon film or titanium nitride aim had higher resistance against wear than the substrates which were not coated by any films (P<0.05). 2. In the results of the fracture cycle test and the wear volume test, diamond-like carbon film had higher resistance against wear than titanium nitride film (P<0.05). 3. In both coatings of diamond-like carbon aim and titanium nitride film, Ti-6Al-4V alloy had higher resistance against wear than commercially pure titanium (P<0.05) 4. In the results of the cytotoxicity test, diamond-like carbon film and titanium nitride film had little cytotoxicity as like commercially pure titanium or Ti-6Al-4V alloy (P>0.05).

  • PDF

A study on the structure of Si-O-C thin films with films size pore by ICPCVD (ICPCVD방법에 의한 나노기공을 갖는 Si-O-C 박막의 형성에 관한 연구)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.477-480
    • /
    • 2002
  • Si-O-C(-H) thin film with a tow dielectric constant were deposited on a P-type Si(100) substrate by an inductively coupled plasma chemical vapor deposition (ICPCVD). Bis-trimethylsilymethane (BTMSM, H$_{9}$C$_3$-Si-CH$_2$-Si-C$_3$H$_{9}$) and oxygen gas were used as Precursor. Hybrid type Si-O-C(-H) thin films with organic material have been generated many voids after annealing. Consequently, the Si-O-C(-H) films can be made a low dielectric material by the effect of void. The surface characterization of Si-O-C(-H) thin films were performed by SEM(scanning electron microscope). The characteristic analysis of Si-O-C(-H) thin films were performed by X-ray photoelectron spectroscopy (XPS).

  • PDF

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.

Temperature dependency of the ZnO nanostructures grown by metalorganic chemical vapor deposition (MOCVD법으로 성장한 ZnO 나노구조의 온도 의존성)

  • Choi, Mi-Kyung;Kim, Dong-Chan;Kong, Bo-Hyun;Kim, Young-Yi;Ahn, Chel-Hyun;Han, Won-Suk;Mohanta, Sanjay Kumar;Cho, Hyung-Koun;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.20-20
    • /
    • 2008
  • 최근 LEDs가 동일 효율의 전구에 비해 에너지 절감 효과 크며 신뢰성이 뛰어나다기 때문에 기존 광원을 빠르게 대체해 나가고 있다. 특히 자외선 파장을 가지는 LEDs는 발열이 낮아 냉각장치가 필요 없으며, 수명이 길어 기존 UV lamp에 비해 많은 장점을 가지고 있기 때문에 많은 관심을 밭고 있다. 그럼에도 불구하고 자외선 LEDs는 제조 단가가 높고 power가 낮아 소요량이 많은 등 아직 해결해야 할 부분이 많기 때문에 이를 해결하기 위해 여러가지 재료와 다양한 구조가 고려되고 있다. 그 중 ZnO는 II-VI족 화합물 반도체로써 UV영역의 넓은 밴드갭(3.37eV)을 가지는 투명한 재료이다. 특히 ZnO는 60meV의 큰 엑시톤 결합에너지를 가지며, 가시광 영역에서 높은 투과율을 가지고, 상온에서 물리적, 화학적으로 안정하기 때문에 UV sensor, UV laser, UV converter, UV LEDs 등 광소자 분야에서 연구가 활발히 진행되고 있다. ZnO가 광소자의 발광재료로써 높은 효율을 얻기 위해서는 결정성을 높여 내부 결함을 감소시키며, 발광 면적을 높일 수 있는 구조가 요구된다. 특히 MOCVD 법으로 성장한 나노막대는 에피성장되어 높은 결정성을 기대할 수 있으며, 성장 조건을 조절함으로써 나노막대의 aspect ratio와 밀도 제어할 수 있기 때문에 표면적을 효과적으로 넓혀 높은 발광효율을 얻을 수 있다. 본 실험에서는 MOCVD 법으로 실리콘과 사파이어 기판 위에 다양한 성장 온도를 가진 나노구조를 성장 시키고 온도에 따른 형상 변화와 특성을 평가하였다. ZnO 의 성장온도가 약 $360^{\circ}C$ 일 때, 밀도가 조밀하고 기판에 수직 배열한 균일한 나노막대가 성장되었으며 우수한 결정성, 광학적 특성이 나타남을 SEM, TEM, PL, XRD를 사용하여 확인하였다.

  • PDF

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.