Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.6.705

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film  

Bogdanowicz, Robert (Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology)
Sobaszek, Michał (Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology)
Ficek, Mateusz (Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology)
Gnyba, Marcin (Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology)
Ryl, Jacek (Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology)
Siuzdak, Katarzyna (Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences)
Bock, Wojtek J. (Centre de Recherche en Photonique, Universite du Quebec en Outaouais)
Smietana, Mateusz (Institute of Microelectronics and Optoelectronics, Warsaw University of Technology)
Publication Information
Journal of the Optical Society of Korea / v.19, no.6, 2015 , pp. 705-710 More about this Journal
Abstract
The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K3[Fe(CN)6] in 0.5 M Na2SO4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.
Keywords
Boron-doped nanocrystalline diamond; Thin films; Optical constants; Fiber optical sensors; Long-period grating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183-20189 (2010).   DOI
2 R. Bogdanowicz, M. Smietana, M. Gnyba, M. Ficek, V. Stranak, L. Golunski, M. Sobaszek, and J. Ryl, “Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer,” Phys. Status Solidi -Appl. Mater. Sci. 210, 1991-1997 (2013).   DOI
3 M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings-pushing the fabrication technique toward its limits,” Meas. Sci. Technol. 22, 015201 (2011).   DOI
4 M. Śmietana, M. Myśliwiec, P. Mikulic, B. S. Witkowski, and W. J. Bock, “Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays,” Sensors 13, 16372-16383 (2013).   DOI
5 R. Bogdanowicz, M. Sobaszek, J. Ryl, M. Gnyba, M. Ficek, Ł. Gołuński, W. J. Bock, M. Śmietana, and K. Darowicki, “Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding,” Diam. Relat. Mater. 55, 52-63 (2015).   DOI
6 M. Smietana, W. J. Bock, and P. Mikulic, “Effect of hightemperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers,” Meas. Sci. Technol. 24, 094016 (2013).   DOI
7 J. W. Ager III, W. Walukiewicz, M. McCluskey, M. A. Plano, and M. I. Landstrass, “Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition,” Appl. Phys. Lett. 66, 616-618 (1995).   DOI
8 R. Bogdanowicz, “Characterization of optical and electrical properties of transparent conductive boron-doped diamond thin films grown on fused silica,” Metrol. Meas. Syst. 21, 685-698 (2014).
9 R. Bogdanowicz, M. Śmietana, M. Gnyba, Ł. Gołunski, J. Ryl, and M. Gardas, “Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding,” Appl. Phys. A 116, 1927-1937 (2014).   DOI
10 A. Zieliński, R. Bogdanowicz, J. Ryl, L. Burczyk, and K. Darowicki, “Local impedance imaging of boron-doped polycrystalline diamond thin films,” Appl. Phys. Lett. 105, 131908 (2014).   DOI
11 M. Nesládek, D. Tromson, C. Mer, P. Bergonzo, P. Hubik, and J. J. Mares, “Superconductive B-doped nanocrystalline diamond thin films: Electrical transport and Raman spectra,” Appl. Phys. Lett. 88, 232111 (2006).   DOI
12 M. Śmietana, M. Koba, P. Mikulic, R. Bogdanowicz, and W. J. Bock, “Improved diamond-like carbon coating deposition uniformity on cylindrical sample by its suspension in RF PECVD chamber,” Phys. Status Solidi A 212, http://dx.doi.org/10.1002/pssa.201532226 (2015).   DOI
13 M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Tuned pressure sensitivity of dual resonant long-period gratings written in boron co-doped optical fiber,” IEEE J. Lightwave Technol. 30, 1080-1084 (2012).   DOI
14 J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. Nanotechnol. 7, 394-400 (2008).   DOI
15 E. Brzozowska, M. Śmietana, M. Koba, S. Górska, K. Pawlik, A. Gamian, and W. J. Bock, “Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings,” Biosens. Bioelectron. 67, 93-99 (2015).   DOI
16 M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, and W. J. Bock, “Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays,” Opt. Express 23, 8441-8453 (2015).   DOI
17 R. Bogdanowicz, M. Sobaszek, M. Ficek, M. Gnyba, J. Ryl, K. Siuzdak, and M. Śmietana, “Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing,” Proc SPIE, Fifth Asia-Pacific Optical Sensors Conference 9655, 965519 (2015).
18 M. Smietana, W. J. Bock, P. Mikulic, A. Ng, R. Chinnappan, and M. Zourob, “Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings,” Opt. Express 19, 7971 (2011).   DOI
19 A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” IEEE J. Lightwave Technol. 14, 58-65 (1996).   DOI
20 J. Dakin and B. Culshaw, Optical Fiber Sensors: Principles and Components (Artech House Publishers, Boston, USA,1988).
21 J. Stotter, S. Haymond, J. K. Zak, Y. Show, Z. Cvackova, and G. M. Swain, “Optically transparent diamond electrodes for UV-Vis and IR spectroelectrochemistry,” Interface 12, 33-38 (2003).
22 J. Stotter, J. Zak, Z. Behler, Y. Show, and G. M. Swain, “Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz,” Anal. Chem. 74, 5924-5930 (2002).   DOI
23 M. Sobaszek, Ł. Skowroński, R. Bogdanowicz, K. Siuzdak, A. Cirocka, P. Zięba, M. Gnyba, M. Naparty, Ł. Gołuński, and P. Płotka, “Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes,” Opt. Mater. 42, 24-34 (2015).   DOI
24 P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith, and K. N. Rosser, “Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films,” Diam. Relat. Mater. 17, 105-117 (2008).   DOI
25 M. Smietana, J. Szmidt, M. L. Korwin-Pawlowski, W. J. Bock, and J. Grabarczyk, “Application of diamond-like carbon films in optical fibre sensors based on long-period gratings,” Diam. Relat. Mater. 16, 1374-1377 (2007).   DOI
26 D. Viegas, J. Goicoechea, J. M. Corres, J. L. Santos, L. A. Ferreira, F. M. Araújo, and I. R. Matias, “A fibre optic humidity sensor based on a long-period fibre grating coated with a thin film of SiO2 nanospheres,” Meas. Sci. Technol. 20, 034002 (2009).   DOI
27 E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. Pure Appl. Opt. 11, 015501 (2009).   DOI
28 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
29 M. Śmietana, M. Dudek, M. Koba, and B. Michalak, “Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres, ” Phys. Status Solidi A 210, 2100-2105 (2013).   DOI
30 M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” IEEE J. Lightwave Technol. 30, 1185-1189 (2012).   DOI