A Study of Electrical Anisotropy of n-type a-plane GaN films grown on $\gamma$-plane Sapphire Substrates

$\gamma$-plane 사파이어 기판 위에 성장한 무분극 ${alpha}$-plane GaN 층의 전기적 비등방성 연구

  • Kim, Jae-Bum (School of Electronics and Electrical Engineering, Korea University) ;
  • Kim, Dong-Ho (School of Electronics and Electrical Engineering, Korea University) ;
  • Hwang, Sung-Min (School of Electronics and Electrical Engineering, Korea University) ;
  • Kim, Tae-Geun (Korea Electronics Technology Institute)
  • 김재범 (고려대학교 전자전기전파공학부) ;
  • 김동호 (고려대학교 전자전기전파공학부) ;
  • 황성민 (고려대학교 전자전기전파공학부) ;
  • 김태근 (고려대학교 전자부품연구원)
  • Received : 2010.03.22
  • Accepted : 2010.07.01
  • Published : 2010.08.25

Abstract

We report on the electrical properties of Ti/Al/Ni/Au (20 nm/ 150 nm/ 30 nm/ 100 nm) Ohmic contacts and the anisotropic conductivity of n-type ${\alpha}$-plane ([11-20]) GaN grown on $\gamma$-plane ([1-102]) sapphire substrates. The Ti/Al/Ni/Au Ohmic contacts and their sheet resistances are characterized by using the transfer length method (TLM) as a function of azimuthal angles. It is found that the specific contact resistance does not depend on the axis orientation and there are significant electrical anisotropy in ${\alpha}$-plane GaN films on $\gamma$-plane sapphire substrates, and the sheet resistance varies with azimuthal angles. The sheet resistance values in the direction parallel to m-axis [1-100] are 25% ~ 75% lower than those parallel to c-axis [0001] directions. Thus, Basal stacking faults (BSFs) are offered as a feasible source of the anisotropic mobility in defected m-axis direction because the band-edge discontinuities owing to the differential band gap structure.

본 논문에서는 무분극 GaN층에서 관찰되는 성장축의 방향성에 따른 전기적 비등방성에 대한 연구를 수행하였다. 본 연구를 위해 $\gamma$-plane 사파이어 기판 상에 유기화학기상증착법 (Metal-organic chemical vapor deposition)을 이용하여 600 nm 두께의 ${\alpha}$-plane n-type GaN층을 성장시킨 후, Ti/Al/Ni/Au (20 nm/ 150 nm/ 30 nm/ 100 nm) 오믹 전극을 증착하여 transfer length method (TLM)로 접촉저항을 측정하였다. 그 결과, ${\alpha}$-plane GaN층이 갖는 축의 방향성에 의한 접촉저항이 차이는 없는 것을 확인하였고, 면저항 측정 시에는 m-축 방향에 비해 c-축 방향에서 발생하는 면저항 값이 약 25%~75% 정도 크게 발생하는 것을 확인할 수 있었다. 이러한 전기적 특성의 비등방성은 c-축 성장방향에 대해 수직방향을 갖는 기저적층결함 (basal stacking faults)의 생성으로 인한 전자들의 거동 저하에 의한 것으로 사료된다.

Keywords

References

  1. F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, Vol.56, p.p. R10024–R10027, 1997.
  2. C. Chen, V. Adivararahan, J. Yang, M. Shatalov, E. Kuokstis and M. Asif Khan, "Ultraviolet Light Emitting Diodes Using Non-Polar a-Plane GaN-AlGaN Multiple Quantum Wells," Jpn. J.Appl. Phys., Vol. 42, p.p. L1039-L1040, 2003. https://doi.org/10.1143/JJAP.42.L1039
  3. D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Activation energy of Mg in a-plane $Ga_{1}-_{x}In_{x}N$ (0 https://doi.org/10.1002/pssb.200880826
  4. S. Chevtchenko, X. Ni, Q. Fan, A. A. Baski, and H. Morkoc, "Surface band bending of a-plane GaN studied by scanning Kelvin probe microscopy," Appl. Phys. Lett., Vol. 88, p.p. 122104-122107, 2006. https://doi.org/10.1063/1.2188589
  5. M. McLaurin, T. E. Mates, F. Wu, and J. S. Speck, "Growth of p-type and n-type m-plane GaN by molecular beam epitaxy," J. Appl. Phys. Vol. 100, p.p. 063707-063714, 2006. https://doi.org/10.1063/1.2338602
  6. M. McLaurin, and J. S. Speck, "p-type conduction in stacking-fault-free m-plane GaN," physica status solidi-Rapid Research Letters (RRL), Vol. 1, No. 3, p.p. 110-112, 2007. https://doi.org/10.1002/pssr.200701041
  7. M. Mclaurin, T. E. Mates, and J. S. Speck,"Molecular-beam epitaxy of p-type m-planeGaN," Appl. Phys. Lett., Vol. 86, p.p. 262104-262107, 2005. https://doi.org/10.1063/1.1977204
  8. Gregory S. Marlow, and Mukunda B. Das, "The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,: Solid-state Electronics, Vol. 25, p.p. 91-94, 1982. https://doi.org/10.1016/0038-1101(82)90036-3
  9. J. S. Foresi, and T. D. Moustakas, "Allelectronic generation of 880 fs, 3.5 V shockwaves and their application to a 3 THz free‐space signal generation system," Appl. Phys. Lett., Vol. 62, p.p. 22-25, 1993. https://doi.org/10.1063/1.108806
  10. Y.-L. Wang, F. Ren, U. Zhang, Q. Sun, C. D. Yerino, T. S. Ko, Y. S. Cho, I. H. Lee, J. Han, and S. J. Pearton, "Improved hydrogen detection sensitivity in N-polar GaN Schottky diodes," Appl. Phys. Lett., Vol. 94, p.p. 212108-212111, 2009. https://doi.org/10.1063/1.3148369
  11. D. K. Schroder, "Semiconductor Material and Device Characterization", (Wiley and Sons, NY 1990).
  12. D. N. Zakharov, and Z. Liliental-Weber, "Structural TEM study of nonpolar a-plane gallium nitride grown on (1120) 4H-SiC by organometallic vapor phase epitaxy," Phys. Rev. B, 71, p.p. 235334-235343, 2005. https://doi.org/10.1103/PhysRevB.71.235334