• Title/Summary/Keyword: chemical transportation

Search Result 445, Processing Time 0.026 seconds

Green pathway to hydrogen fuel cell vehicle (수소 연료전지차로의 전환을 위한 녹색 전략)

  • Lee, Munsu;Lee, Minjin;Lee, Younghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구)

  • Jung, No-Geon;Chang, Chin-Young;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.

A Study on RF Communication Stabilization of Security System for Oil Tank-Lorry Truck Based on IoT (IoT 기반의 유류 수송 차량 보안 시스템을 위한 RF 통신 안정화 개선 연구)

  • Kim, Min-Sung;Kim, Hie-Sik;Kim, Hae-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.916-922
    • /
    • 2017
  • Security systems for inland cargo truck transportation are mostly limited to route tracking for safe and efficient transportation. With this route tracking system, the status of cargo trucks can be monitored easily within inland boundaries. In case of oil transportation by land, however, security systems ensuring transportation of a designated quantity of products have been subject to extensive research since thefts and substitution by a similar product in the transportation process have emerged as a social problem. Security devices installed in an oil tank truck must meet the explosion-proof performance standards and be applicable to varying types of trucks. Accordingly, a wireless electronic seal with RF communication functions is considered to be the most appropriate method, but e-seals on moving vehicles require such levels of performance and reliability that can overcome certain challenges including changing radio waves and topographical impediments. Considering these characteristics of oil tank trucks, this study proposes an stabilization method to enhance the RF communication performance of e-seals, based on radio simulation and experiment findings.

Enhancement of Coagulation and Flocculation Efficiencies by Ultrasonic Chemical Spray Nozzle I (초음파 약품분사노즐을 이용한 응집효율 향상 I)

  • Kim, Jin-Kook;Cho, Soon-Haing;Ha, Dong-Yun;Koh, Jae-Seok;Kim, Yong-Hyun;Choi, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • To establish low-cost and high efficiency water treatment process, feasibility of applying ultrasonic spray nozzle for chemical injection was evaluated. Ultrasonic spray nozzle was manufactured using piezoelectric ceramics. Treatment efficiencies of contaminants by ultrasonic spray nozzle were compared with conventional chemical mixing such as back-mixing. It was found out that the rate of chemical diffusion rate by ultrasonic spray nozzle was faster than by back-mixing method. Removal efficiencies of various contaminants, such as turbidity, organics and microorganism by ultrasonic spray nozzle were also higher than by back-mixing method. By adapting ultrasonic spray nozzle in coagulant injection process, it can be prevented that the decline of treatment efficiency by coagulant overdose. The amount of coagulant can be reduced by applying ultrasonic spray nozzle in water treatment. Along with these advantages chemical mixing chamber is not required if ultrasonic spray nozzle is adapted. From these results, it can be concluded that chemical injection by ultrasonic spray nozzle is an economical and highly efficient device for coagulant mixing.

Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process (SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산)

  • Lee, Pyoung Jong;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.

The Relationship between Workers' Safety Behaviors and Safety Climate in Chemical Industry (화학산업 작업자의 안전행동과 안전분위기의 상관관계)

  • Baek, Jong-bae;Uhm, Minyong;Kim, Ji-sun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.100-107
    • /
    • 2015
  • Korea government has established and enforced countermeasures about the various policy of industrial accident prevention. Recent chemical accidents included hazardous materials. Exposure to these chemicals can cause serious environmental poisoning and various health problems. The key factor causing these major accidents may be associated with the mistake in workers' safety behaviors. Some researchers noted workers' safety behaviors may be related to workers' safety climate. In this research, a survey was conducted to explore workers' safety behaviors and safety climate in a large petrochemical company in Korea. The company processes major petrochemical materials and any spills can be hazardous and cause chemical disasters. In this study, we explored one petrochemical company to investigate three hypotheses. 593 workers were surveyed for this study. We checked association between workers' safety behavior and safety climate. The survey result shows the people who have safety climate do safe behavior.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.

Risk Assessment Based on Highway Hydrogen Chloride Gas Leakage Scenario Using GIS (GIS를 활용한 고속도로 염화수소 가스 누출 시나리오 기반 리스크 평가)

  • Kim, Kuyoon;Lee, Jaejoon;Yun, Hongsik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.591-601
    • /
    • 2021
  • As the domestic chemical industry continues to develop, handling and transportation of chemicals increases every year. Road freight in Korea accounts for more than 90%, and most of the chemical transportation is done through roads. These chemical vehicles can lead to major accidents if accidents occur. Transportation vehicles are likely to cause water pollution and soil pollution, which are factors of environmental damage, as well as traffic accidents that are the primary damage. In this work, we write a scenario for hydrogen chloride gas leakage by setting Banpo IC and Seocho IC sections as research areas, and use the ALOHA program to measure the predicted distance and analyze the time when hydrogen chloride gas reached according to the distance. In addition, risk assessment using population density was carried out for areas of damage caused by time using GIS. This suggests the need for prevention and countermeasures in areas of damage.

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.3
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

Development of Zn-Al thermal diffusion coating technology for improving anti-corrosion of various metal products (다양한 금속 부품의 내식성 향상을 위한 Zn-Al 열 확산 코팅 기술 개발)

  • Lee, Joo-Young;Lee, Joo-Hyung;Hwang, Joon;Lee, Yong-Kyu
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.195-203
    • /
    • 2014
  • Modern industry has a wide variety of application areas such as ocean industry, construction and automobile industry. With the current circumstances, the need for anti-corrosion technology that can be used on materials to withstand in harsh environments, is increasing. In this study, we have sought to develop a metal coating technology with zinc and aluminum powders as a potential anti-corrosion material. To make a coating on metal products, a thermal diffusion coating method was used under the conditions of $350^{\circ}C$ for 30 minutes. Optical microscope, Field emission scanning electron microscope (FE-SEM&EDX) and X-ray diffraction analysis were used to analyze a coating layer. As a result, we have confirmed that the generated amount of rust on metal parts coated with thermal diffusion coating method decreased dramatically compared with non-coated metal parts. Furthermore, the anti-corrosion performance was evaluated according to the different ratio of zinc and aluminum. Finally, we confirmed the possibility of application and commercialization of our coating technique on metal parts used in harsh industrial based on the results of these performance.