• Title/Summary/Keyword: chemical states

Search Result 850, Processing Time 0.032 seconds

A Study of the Chemical Composition of Korean Traditional Ceramics (I): Celadon and Kory$\v{o}$ Whiteware (한국 전통 도자기의 화학 조성에 대한 연구 (I): 고려청자와 고려백자)

  • Koh, Kyong-Shin Carolyn;Choo, Woong-Kil;Ahn, Sang-Doo;Lee, Young-Eun;Kim, Gyu-Ho;Lee, Yeon-Sook
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.213-228
    • /
    • 2010
  • The composition of Chinese ceramic shards has been the subject of analysis in Europe, beginning in the 18th century, and in China from the 1950s. Scientific studies of traditional Korean shards commenced in the United States and Germany in the 1980s, and studies within Korea began in the 1990s. From analysis of a large systematically collected dataset, the composition of porcelain produced during the Kory. dynasty, including 21 celadon and 10 whiteware groups, was characterized and compared with that of Chinese ceramics. The average composition of the body and glaze of several shards (usually three to five) from each group was determined, enabling comparisons between groups. The results show that the majority of groups were derived from mica-quartz porcelain stone, which was commonly used in Yuezhou, Jingdezhen, and other southern Chinese kilns. The composition of glazes includes clay and flux components; the latter were typically wood ash and limestone, initially as burnt but later as crushed forms. The earliest of the Kangjin glazes contained substantially less titanium oxide than did the Yuezhou glazes, which were typically formulated from body material and wood ash. The present study provides a comparative framework for the growing number of analytical investigations associated with excavations occurring in Korea.

Geological Environments, and Deterioration States and Causes on the Carved Buddhist Triad on Rock-cliff in Sinamri, Yeongju (영주 신암리 마애삼존석불에 대한 지질환경과 훼손상태 및 원인)

  • Hwang, Sang-Koo;Lee, Sang-Jin;Kim, Jae-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.95-107
    • /
    • 2008
  • The Carved Buddhist Triad on Rock-cliff in Sinarnri (Treasure No. 680) consists of biotite granodiorite, which were positively carved on fore and west planes of four subvertical cliffs by two joint sets of NE-SW and NNW-SSE directions. The cliffs are $N50^{\circ}E\;85^{\circ}SE$ in fore plane, $N25^{\circ}W\;90^{\circ}$ in west plane, $N40{\sim}50^{\circ}E\; 82{\sim}85^{\circ}NW$, back plane, $N20^{\circ}W\;75^{\circ}SW$ in east plane, which are parallel to two joint sets of NE-SW and NNW-SSE directions in geology around it. The chemical index of alteration ranges 60.3 to 62.0 from the major elements in the rock that was weathered into producing kaolin minerals from alteration of feldspars and biotite. The Buddhist image has been deteriorated into joints, brown rusts, discolorations and granular disintegrations by such deterioration causes as deformation, moisture, temperature variation and microorganic living. The moisture, which leaks from groundwater in the rock, dissolve to decompose minerals.

The Study on Mössbauer Spectroscopy of Zn1-xFexO (Zn1-xFexO의 뫼스바우어 분광학적 연구)

  • Kim, S.J.;Lee, S.R.;Park, C.S.;Kim, E.C.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.75-78
    • /
    • 2008
  • $AB_2X_4$(A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

Theoretical and quantitative structural relationships of the electrochemical properties of Cis-unsaturated thiocrown ethers and n-type material bulk-heterojunction polymer solar cells as supramolecular complexes [X-UT-Y]@R (R = PCBM, p-EHO-PCBM, and p-EHO-PCBA)

  • Taherpour, Avat Arman;Biuki, Farzaneh
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.145-152
    • /
    • 2011
  • Since the discovery of fullerenes as a class of nanostructure compounds, many potential applications have been suggested for their unusual structures and properties. The isolated pentagon rule (IPR) states that all pentagonal carbon rings are isolated in the most stable fullerene. Fullerenes $C_n$ are a class of spherical carbon allotrope group with unique properties. Electron transfer between fullerenes and other molecules is thought to involve the transfer of electrons between the molecules surrounding the fullerene cage. One class of electron transfer molecules is the methanofullerene derivatives ([6,6]-phenyl $C_{61}$-butyric acid methyl ester (PCBM), 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid methyl ester (p-EHO-PCBM), and 4-(2-ethylhexyloxy)-[6,6]-phenyl $C_{61}$-butyric acid (p-EHO-PCBA), 10-12). It has been determined that $C_{60}$ does not obey IPR. Supramolecular complexes 1-9 and 10-12 are shown to possess a previously unreported host.guest interaction for electron transfer processes. The unsaturated, cis-geometry, thiocrown ethers, (1-9) (described as [X-UT-Y], where X and Y indicate the numbers of carbon and sulfur atoms, respectively), are a group of crown ethers that display interesting physiochemical properties in the light of their conformational restriction compared with a corresponding saturated system, as well as the sizes of their cavities. Topological indices have been successfully used to construct mathematical methods that relate structural data to various chemical and physical properties. To establish a good relationship between the structures of 1-9 with 10-12, a new index is introduced, ${\mu}_{cs}$. This index is the ratio of the sum of the number of carbon atoms ($n_c$) and the number of sulfur atoms ($n_s$) to the product of these two numbers for 1-9. In this study, the relationships between this index and oxidation potential ($^{ox}E_1$) of 1-9, as well as the first to third free energies of electron transfer (${\Delta}G_{et(n)}$, for n = 1-3, which is given by the Rehm-Weller equation) between 1-9 and PCBM, p-EHO-PCBM, and p-EHO-PCBA (10-12) as [X-UT-Y]@R(where R is the adduct PCBM, p-EHO-PCBM, and p-EHO-PCBA group) (13-15) supramolecular complexes are presented and investigated.

Hazards of Chloroprene and the Workplace Management (클로로프렌의 유해성과 작업환경 관리)

  • Kim, Hyeon-Yeong;Lim, Cheol-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, we performed risk assessment of chloroprene by hazard evaluation and workplace investigation. The chemical is used to manufacture of shoes, tires, adhesives, and classified as IARC category 2B (possibly carcinogenic to humans) and target organ systemic toxicity. It is used about 1,300 tons per year in 27 sites. It was calculated the risk of carcinogenesis with chloroprene by Monte-carlo simulation that the averages are 2,199 and 26,404 in each case of working less than 15 minutes per day with local exhaust ventilation and over 4 hours per day without local exhaust ventilation. The risk of target organ systemic toxicity are 4.10 and 169.06 with high correlation with working time to be longer and with ventilation system. Therefore, it is recommended that the local exhaust ventilation and respirators to prevent occupational cancer and target organ systemic toxicity with chloroprene. Especially it is determined that there is a need to strengthen the workplace exposure limit (TWA 10 ppm) in Korea since it is managed with TWA less than 5 ppm ($18mg/m^3$) by the United States Occupational Safety and Health Administration (OSHA) as well as it has carcinogenicity, reproductive toxicity.

Mercuric Chloride Induces Apoptosis in MDCK Cells (Mercuric Chloride에 의한 MDCK 세포의 세포사멸)

  • Lee, Ju-Hyoung;Youm, Jung-Ho;Kwon, Keun-Sang
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.3
    • /
    • pp.199-204
    • /
    • 2006
  • Objectives: Mercury is a hazardous organ-specific environmental contaminant. It exists in a wide variety of physical and chemical states, each of which has unique characteristics for the target organ specificity. Exposure to mercury vapor and to organic mercury compounds specifically affects the CNS, while the kidney is the target organ for inorganic Hg compounds. Methods: In this study, mercury chloride $(HgCl_2)$ was studied in a renal derived cell system, i.e., the tubular epithelial Madin-Darby canine kidney (MDCK) cell line, which has specific sensitivity to the toxic effect of mercury. MDCK cells were cultured for 6-24 hr in vitro in various concentrations (0.1-100 M) of $HgCl_2$, and the markers of apoptosis or cell death were assayed, including DNA fragmentation, caspase-3 activity andwestern blotting of cytochrome c. The influence of the metal on cell proliferation and viability were evaluated by the conventional MTT test. Results: The cell viability was decreased in a time and concentration dependent fashion: decreases were noted at 6, 12 and 24 hr after $HgCl_2$, exposure. The increases of DNA fragmentation were also observed in the concentrations from 0.1 to 10 M of $HgCl_2$ at 6 hr after exposure. However, we could not observe DNA fragmentation in the concentrations more than 25 M because the cells rapidly proceeded to necrotic cell death. The activation of caspase-3 was also observed at 6 hr exposure in the $HgCl_2$ concentrations from 0.1 to 10 M. The release of cytochrome c from the mitochondria into the cytosol, which is an initiator of the activation of the caspase cascade, was also observed in the $HgCl_2-treated$ MDCK cells. Conclusions: These results suggest that the activation of caspase-3 was involved in $HgCl_2-induced$ apoptosis. The release of cytochrome c from the mitochondria into the cytosol was also observed in the $HgCl_2-treated$ MDCK cells. These findings indicate that in MDCK cells, $HgCl_2$ is a potent inducer of apoptosis via cytochrome c release from the mitochondria.

Surface analysis of $(Pr_{1-x}Sr_{x})CoO_{3}$ (x=0.5 and 0.7) as a cathode material for Solid Oxide Fuel Cell (고체 산화물 연료전지 공기극 물질인 $(Pr_{1-x}Sr_{x})CoO_{3}$ (x=0.5 및 0.7)의 표면분석)

  • Kim, Jung-Hyun;Lee, Chang-Bo;Baek, Seung-Wook;Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.196-199
    • /
    • 2007
  • The chemical states of oxygen on the surfaces of $Pr_{1-x}Sr_{x}CoO_{3}$ (x=0.5 and 0.7) oxide systems were investigated by X-ray photoelectron spectroscopy. Merged oxygen peaks of $Pr_{1-x}Sr_{x}CoO_{3}$ (x=0.5 and 0.7) oxides could be divided as five sub-peaks. These five sub-peaks could be defined as lattice oxygen ($O_{L}$). chemisorbed oxygen peaks ($O_{C}$) and hydroxyl condition oxygen peak ($O_{H}$). In case of the $Pr_{0.5}Sr_{0.5}CoO_{3}$ and $Pr_{0.3}Sr_{0.7}CoO_{3}$, the binding energy (BE) of oxygen lattice were located at same BE. However, the BE of chemisorbed oxygen peaks including oxygen vacancy shows different BE. Especially, it was found that BE of chemisorbed oxygen peaks was increased when more Sr were substituted. Comparing atomic percentages of oxygens of $Pr_{0.5}Sr_{0.5}CoO_{3}$ and $Pr_{0.3}Sr_{0.7}CoO_{3}$, the ratio of $Pr_{0.3}Sr_{0.7}CoO_{3}$ was higher than that of $Pr_{0.5}Sr_{0.5}CoO_{3}$. It showed more chemically adsorbed site including oxygen vacancies were existed in $Pr_{0.3}Sr_{0.7}CoO_{3}$.

  • PDF

Nanocrystalline Si formation inside SiNx nanostructures usingionized N2 gas bombardment (이온화 N2 가스 입사를 이용한 SiNx 나노구조 내부의 Si 나노결정 형성)

  • Jung, Min-Cherl;Park, Young-Ju;Shin, Hyun-Joon;Byun, Jun-Seok;Yoon, Jae-Jin;Park, Yong-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.474-478
    • /
    • 2007
  • Nanostructures of $SiN_x$ were made by bombardment of ionized $N_2$ on Si surface and subsequent annealing. Atomic force micrograph showed the density of $SiN_x$ nanostructures was $3\times10^{10}/cm^2$. Their lateral size and height were 40$\sim$60 nm and 15 nm, respectively. The chemical state of the nanostructure was measured using X-ray photoelectron spectroscopy, which changed from $SiN_x$ to $Si_3N_4\;+\;SiN_x$ as the bombarding ionized gas current increases. Upon annealing, transmission electron micrograph showed a clear evidence for crystalline Si phase formation inside the $SiN_x$ nanostructures. Photoluminescence peak observed at around 400nm was thought to be originated from the interface states between the nanocrystalline Si and surrounding $SiN_x$ nanostructures.

Study of Lubrication and Oxidation Stability as Mixture Ratio of FAMEs in Lubricating Base Oil (윤활기유 내 지방산메틸에스테르 혼합비율에 따른 윤활특성 및 산화안정성 연구)

  • Kim, Shin;Yim, Eui-Soon;Jung, Choong-Sub;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.715-725
    • /
    • 2013
  • FAMEs produced from vegetable oil via transesterification reaction were known as alternative fuels. Lubrication and Wear properties of FAMEs were investigated to confirm the alternative possibility as lubricating base oil. In this study, lubrication properties and physical characteristics of mixture oils were examined using blended FAMEs(soybean, palm, waste oils) in two kinds of lubricating base oils. The oxidation stability of mixed samples were analyzed using ASTM D 2272 method and investigated for oxidation states of mixture oils after the shell four ball test. The results showed that the increase of FAMEs contents improved lubrication due to the intrinsic characteristics, however, increased the contents of oxidation which deteriorate the lubrication, and we found optimum mixture ratio as results of each base biodiesel (FAME).

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF