• 제목/요약/키워드: chemical shift

검색결과 888건 처리시간 0.023초

Evaluation of Selective Saturation and Refocousing Pulses in Chemical Shift NMR Imaging

  • Shin, Yong-Jin;Park, Young-Sik
    • 한국자기공명학회논문지
    • /
    • 제4권1호
    • /
    • pp.64-73
    • /
    • 2000
  • There are several methods to achieve selective NMR image of differing chemical species with the three most popular methods of Dixon's, CHESS, and SECSI. A major problem common to all chemical shift imaging methods is the uniformity of the static magnetic field and distortions introduced when RF coils are loaded with a conducting specimen. Without magnetic field shimming, these methods cannot be used to acquire selectively image protons in fat and water which are separated by approximately 3.0ppm. Experiments with a phantom, with linewidths of 2.5 to 3.5ppm, were quantitatively evaluated for the three methods and a new chemical shift imaging method. In this study the new chemical shift imaging method (modified CHESS+SECSI technique) which included a selective saturation and refocusing pulse, was developed to determine the ratios of water and fat in different samples.

  • PDF

The Pseudocontact Shift for a $3d^9$ System in a Strong Crystal Field Environment of Tetragonally Distorted Tetrahedral Symmetry

  • Kim, Dong-Hee;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권6호
    • /
    • pp.618-625
    • /
    • 1991
  • A general expression adopting a nonmultipole expansion method is derived for pseudocontact contribution to the NMR chemical shift arising from the electron orbital angular momentum and electron spin dipolar-nuclear spin angular momentum interaction of $3d^9$ system in a strong crystal field of tetragonally distorted tetrahedral symmetry. From this expression all the multipolar term are determined and the exact solution of ${\Delta}$B/B(ppm) is compared with the multipolar term. The $1/R^5$ term in the multipolar terms contributes dominantly to the NMR chemical shift but the other terms are certainly significant except that of the <111> axis. In addition, an analysis of the temperature dependence of the NMR chemical shift further illustrates that considerable care must be taken in interpeting NMR results in paramagnetic system.

Ab initio Nuclear Shielding Calculations for Some X-Substituted Silatranes Using Gauge-Including Atomic Orbitals

  • 김동희;이미정
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.981-985
    • /
    • 1997
  • 13C, 15N, and 29Si NMR chemical shifts have been computed for selected X-substituted silatranes (X=Cl, F, H, CH3) using Gauge-Including Atomic Orbitals (GIAO) at the Hartree-Fock level of theory. The isotropic 13C chemical shifts are largely insensitive to substituent-induced structural changes. In this study, the isotropic 13C chemical shifts between 1-methyl- and 1-hydrogensilatranes by GIAO-SCF calculation at the HF/6-31G level are very similar. But the results of 1-chloro- and 1-fluorosilatranes are about 4 ppm different from the experimental values. In contrast, the isotropic 15N and 29Si chemical shifts and the chemical shielding tensors are quite sensitive to substituent-induced structural changes. These trends are consistent with those of the experiment. The isotropic 15N chemical shift demonstrates a very clear correlation with Si-N distance. But in case of 29Si the correlations are not as clean as for the 15N chemical shift; the calculated variation in the 29Si chemical shift is much larger.

The NMR Chemical Shift for 4d$^n$ Systems(Ⅲ). Calculation of the NMR Shift for a 4d$^1$ System in a Strong Crystal Field Enviroment of Tetragonal Symmetry

  • Ahn, Sang-Woon;Park, Eui-Suh;Oh, Se-Woung
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권2호
    • /
    • pp.55-60
    • /
    • 1984
  • The NMR shift arising from the electron angular momentum and electron spin dipolar-nuclear spin angular momentum interactions has been investigated for a $4d^1$system in a strong crystal field environment of tetragonal symmetry. A general formula for NMR shift is used to compute the NMR shifts along the (100), (010), (001), (110) and (111) axes. We find that from the computed results, the NMR shift along the (100) and (010) axes is consistent with each other in a strong crystal field environment of tetragonal symmetry, but the NMR shift along the (001) axis is about triply greater in magnitude than those along the (100) and (010) axes and is opposite in sign to those along (100) and (010) axes. In this work, we express the expansion coefficients $a_1^{(i)}$ and $b_1^{(i)}$ of $A_i$ and $B_i$ in terms of $g_m^{(i)}$ and $h_m^{(i)}$ and two matrices $c_{lm}$ and $d_{lm}$ of radial dependence. The NMR shift is also separated into the contributions of multipolar terms. We find that $1/R^3$ term contributes dominantly to the NMR shift along the (100), (010), (001) and (110) axes while along the (111) axis $1/R^5$ term dominantly contributes. However, the contribtions of the other terms may not be negligible.

뇌 대사물질 팬텀을 이용한 뇌의 자기공명 온도측정법에 관한 기초 연구 (Preliminary Study on Magnetic Resonance Temperature Measurement using Brain-Metabolite Phantom)

  • 한용희;장무영;문치웅
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권5호
    • /
    • pp.412-416
    • /
    • 2010
  • In this study, we measured the chemical shift change of metabolite peaks in the brain-metabolite phantom according to the temperature variation using nuclear magnetic resonance(NMR). The temperature range in NMR system was controled from 25 to 80 (5 step) by internal temperature controller. Temperature coefficients of each metabolite peaks were also calculated from the measured chemical shift depending on the temperature. The chemical shift changes depending on temperature were validated by linear regression method for each metabolite peaks. The temperature coefficients of $_{tot}Cr$, Cho, Cr, NAA, and Lac were 0.0086, 0.0088, 0.0091, 0.0089, and 0.0088ppm/$^{\circ}C$, respectively. This study shows that chemical shift change of brain metabolite and temperature variation have linear relationship each other. This also makes authors believe that brain temperature measurement is possible using MR spectroscopic imaging technique.

Chemical Shift and Quadrupolar Interactions in Solids

  • Kim Jin-Eun
    • 한국자기공명학회논문지
    • /
    • 제10권1호
    • /
    • pp.1-37
    • /
    • 2006
  • General expressions for solid state NMR lines are described for transitions under static, magic angle spinning, and variable angle spinning conditions in the case where the principal axis system for the anisotropic chemical shift tensor is noncoincident with that of the quadrupole coupling tensor. It is demonstrated that solid state NMR powder pattern simulation program VMAS based on the conventional grid point method of integrating over the Euler angle space is fast enough in comparison with the POWDER simulation package and Gauss-point method.

  • PDF

Backbone NMR chemical shift assignment of transthyretin

  • Kim, Bokyung;Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제25권1호
    • /
    • pp.8-11
    • /
    • 2021
  • Transthyretin (TTR) is an important transporter protein for thyroxine (T4) and a holo-retinol protein in human. In its native state, TTR forms a tetrameric complex to construct the hydrophobic binding pocket for T4. On the other hand, this protein is also infamous for its amyloidogenic propensity, which causes various human diseases, such as senile systemic amyloidosis and familial amyloid polyneuropathy/cardiomyopathy. In this work, to investigate various structural features of TTR with solution-state nuclear magnetic resonance (NMR) spectroscopy, we conducted backbone NMR signal assignments. Except the N-terminal two residues and prolines, backbone 1H-15N signals of all residues were successfully assigned with additional chemical shift information of 13CO, 13Cα, and 13Cβ for most residues. The chemical shift information reported here will become an important basis for subsequent structural and functional studies of TTR.

O-Ethyl S-methyl ethylphosphonothioate의 대사(代謝) 주생성물(主生成物인) O-ethyl ethylphosphonic acid의 $^{31}P-NMR$ chemical shift 에 대한 pH 및 용매 효과 (($^{31}P-NMR$ chemical shift variation of O-ethyl ethylphosphonic acid with change of pH's and solvents in metabolic and chemical oxidation of O-ethyl S-methyl ethyphosphonothioate)

  • 허장현;한대성
    • 한국환경농학회지
    • /
    • 제12권2호
    • /
    • pp.169-175
    • /
    • 1993
  • 유기인계 화합물중 독성이 매우 강한 O-ethyl S-methyl ethylphosphonothioate (1)의 화학적, 대사적 산화생성물들에 대한 $^{31}P-NMR$ 분석에서 주된 산화 생성물인 O-ethyl ethylphosphonic acid (2)의 chemical shift가 MCPBA 반응에서 40.15ppm, MMPP 반응에서 30.98ppm, microsomal oxidation system에서 29.31ppm, 그리고 집파리 생체실험에서 29.10ppm으로 반응조건에 따라 서로 상당히 상이하게 관찰되었다. 이 산화 생성물의 $^{31}P-NMR$ spectrum 상에서의 chemical shift에 대한 용매효과는 deutero-chloroform을 사용했을때 30.70ppm, 극성 용매인 deuterium oxide를 사용했을때 40.15ppm으로 관찰되었으며, pH에 대한 효과는 pH 3, 5.6, 14에서는 30ppm을 전후하여, pH 1의 강산성 조건하에서는 47.91ppm에서 나타났다. 이는 유기산 형태의 생성물 (2)가 ionized form이 형성될수있는 조건하에서는 산소원자의 비공유전자쌍들에 의하여 인원자가 차폐되어 chemical shift가 upfield쪽으로 이동을하고, 반면 비극성과 강산성 조건하에서는 Protonated form으로 존재하여 인(燐)원자에 대한 차폐효과가 줄어들기 때문에 downfield쪽으로 이동하는 것으로 관찰되었다.

  • PDF

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.