DOI QR코드

DOI QR Code

Backbone NMR chemical shift assignment of transthyretin

  • Kim, Bokyung (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2021.03.19
  • Accepted : 2021.03.19
  • Published : 2021.03.20

Abstract

Transthyretin (TTR) is an important transporter protein for thyroxine (T4) and a holo-retinol protein in human. In its native state, TTR forms a tetrameric complex to construct the hydrophobic binding pocket for T4. On the other hand, this protein is also infamous for its amyloidogenic propensity, which causes various human diseases, such as senile systemic amyloidosis and familial amyloid polyneuropathy/cardiomyopathy. In this work, to investigate various structural features of TTR with solution-state nuclear magnetic resonance (NMR) spectroscopy, we conducted backbone NMR signal assignments. Except the N-terminal two residues and prolines, backbone 1H-15N signals of all residues were successfully assigned with additional chemical shift information of 13CO, 13Cα, and 13Cβ for most residues. The chemical shift information reported here will become an important basis for subsequent structural and functional studies of TTR.

Keywords

References

  1. S. H. Ingbar, Endocrinology 63, 256 (1958) https://doi.org/10.1210/endo-63-2-256
  2. C. C. F. Blake, M. J. Geisow, S. J. Oatley, B. Rerat, and C. Rerat, J. Mol. Biol. 121, 339 (1978) https://doi.org/10.1016/0022-2836(78)90368-6
  3. B. Kim and J. Kim, J. Kor. Magn. Reson. Soc. 24, 91 (2020) https://doi.org/10.6564/jkmrs.2020.24.3.091
  4. P. Westermark, K. Sletten, B. Johansson, and G. G. Cornwell, Proc. Natl. Acad. Sci. U. S. A. 87, 2843 (1990) https://doi.org/10.1073/pnas.87.7.2843
  5. P. P. Costa, A. S. Figueira, and F. R. Bravo, Proc. Natl. Acad. Sci. U. S. A. 75, 4499 (1978) https://doi.org/10.1073/pnas.75.9.4499
  6. L. H. Connors, A. Lim, T. Prokaeva, V. A. Roskens, and C. E. Costello, Amyloid 10, 160 (2003) https://doi.org/10.3109/13506120308998998
  7. S. K. Palaninathan, Curr. Med. Chem. 19, 2324 (2012) https://doi.org/10.2174/092986712800269335
  8. J. K. Das, S. S. Mall, A. Bej, and S. Mukherjee, Angew. Chemie - Int. Ed. 53, 12781 (2014) https://doi.org/10.1002/anie.201407323
  9. K. H. Lim, H. J. Dyson, J. W. Kelly, and P. E. Wright, J. Mol. Biol. 425, 977 (2013) https://doi.org/10.1016/j.jmb.2013.01.008
  10. J. Kim, J. Oroz, and M. Zweckstetter, Angew. Chemie - Int. Ed. 55, 16168 (2016) https://doi.org/10.1002/anie.201608516
  11. J. Oroz, J. Kim, B. J. Chang, and M. Zweckstetter, Nat. Struct. Mol. Biol. 24, 407 (2017) https://doi.org/10.1038/nsmb.3380
  12. J. T. Hoopes, M. A. Elberson, R. J. Preston, P. T. Reddy, and Z. Kelman, Method. Enzymol. 565, 27 (2015) https://doi.org/10.1016/bs.mie.2015.08.023
  13. W. Lee, M. Tonelli, and J. L. Markley, Bioinformatics 31, 1325 (2015) https://doi.org/10.1093/bioinformatics/btu830