• Title/Summary/Keyword: chemical protection properties

Search Result 163, Processing Time 0.032 seconds

Electrochemical Determination of Artemisinin Using a Multi-wall Carbon Nanotube Film-modified Electrode

  • Yang, Xiaofeng;Gan, Tian;Zheng, Xiaojiang;Zhu, Dazhai;Wu, Kangbing
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1386-1390
    • /
    • 2008
  • Artemisinin, the effective ingredient of Chinese herb Artemisia annua L (Qinghao in Chinese), has been proved to be effective to antimalarial. Herein, a reliable, sensitive and convenient electrochemical method was developed for the determination of artemisinin utilizing the excellent properties of multi-wall carbon nanotube (MWNT). The electrochemical behavior of artemisinin was investigated. It is found that the reduction peak current of artemisinin remarkably increases and the peak potential shifts positively by 240 mV at the MWNT film-modified electrode. These phenomena indicate that the MWNT film exhibits efficient catalytic activity to the electrochemical reduction of artemisinin. The effects of pH value, amount of MWNT, scan rate and accumulation time were examined. The limit of detection (S/N = 3) is as low as 10 $\mu$ g $L^{-1}$. Finally, this newly developed method was used to determine the content of artemisinin in Artemisia annua L.

A Study on Fire Protection of Chemical Plants Using FRA (Fire Risk Assessment) Method (FRA(Fire Risk Assessment)기법을 이용한 화학공장의 Fire Protection에 관한 연구)

  • Han, Seung-Hoon;Yoo, Byung-Tae;Tae, Chan-Ho;Chae, Chung Keun;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.17-26
    • /
    • 2016
  • Chemical plants and oil gas refinery facilities are intrinsically vulnerable to industrial hazards, such as explosion or fire. Especially, the fire is extremely dangerous to facility structures and plant personnel because of direct flame, radiant heat and smoke. In addition, it has the ripple effect of destroying infra-structures and polluting the environment. In an effort to tackle these potential industrial risks, the procedure of FRA techniques in chemical plants were investigated. The main focus was put on the time variation of physical properties of the main building, i.e. control rooms, warehouses and electrical substations, from a direct flame contact and radiant heat. The deformation of a building due to fire was monitored and modeled with respect to time variable. A variety of case studies, domestic and abroad, was tested in the model to verify the FRA procedure. The developed model was proven to be highly effective to reduce the possible risks at chemical plants. An accurate accident frequency prediction and damage quantification was made by the developed model.

Preparation and Resistant Property of Acrylic Adhesives for Automobiles Protection (자동차 보호용 아크릴 점착제의 제조 및 내성조사)

  • Hahm, Hyun-Sik;Park, Ji-Young;Ahn, Sung-Hwan;Kim, Song-Hyoung;Hong, Suk-Young;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2006
  • Acrylic adhesives for automobiles protection were prepared by emulsion polymerization. Monomers used were n-butyl acrylate(BA), acrylonitrile (AN), butyl methacrylate(BMA), glycidyl methacrylate(GMA), and acrylic acid (AA). Emulsifiers used were sodium lauryl sulfate and polyoxyethylene lauryl ether, which are an anionic emulsifier and a nonionic emulsifier respectively. Potassium persulfate was used as an initiator and polyvinyl alcohol was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch reactor at $70^{\circ}C$ and agitation speed was kept at 200 rpm. Water resistance, heat resistance, acid resistance, alkali resistance and smoke resistance were examined. As a result, when each 0.03 mole of GMA and AA was introduced, the adhesion properties and various above mentioned resistances of the prepared adhesives were satisfied the standard for automobiles.

Surface modified rice husk ceramic particles as a functional additive: Improving the tribological behaviour of aluminium matrix composites

  • Cheng, Lehua;Yu, Dongrui;Hu, Enzhu;Tang, Yuchao;Hu, Kunhong;Dearn, Karl David;Hu, Xianguo;Wang, Min
    • Carbon letters
    • /
    • v.26
    • /
    • pp.51-60
    • /
    • 2018
  • An electroless deposition method was used to modify the surface properties of rice husk ceramic particles (RHC) by depositing nano-nickel on the surface of the RHC (Ni-RHC). The dry tribological performances of aluminum matrix composite adobes containing different contents of RHC and Ni-RHC particles have been investigated using a micro-tribometer. Results showed that the Ni-RHC particles substantially improved both the friction and wear properties of the Ni-RHC/aluminum matrix adobes. The optimal concentration was determined to be 15 wt% for both the RHC and Ni-RHC particles. The improvements in the tribological properties of aluminum adobes including the Ni-RHC were ascribed to friction-induced peeling off of Ni coating and formation of protection layer on the wear zone, both of which led to low friction and wear volume.

Molecular Characterization of an Isolate of Bean Common Mosaic Virus First Identified in Gardenia Using Metatranscriptome and Small RNA Sequencing

  • Zhong-Tian Xu;Hai-Tao Weng;Jian-Ping Chen;Chuan-Xi Zhang;Jun-Min Li;Yi-Yuan Li
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.73-82
    • /
    • 2024
  • Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMVgardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.

Environmental Distribution and Fate of Perfluorinated Compounds (PFCs) as Emerging POPs: Physico-Chemical Properties, Emission, Contamination Level, Inter-phase Distribution and Long-Range Transport (잠재적 POPs로서의 과불소화화합물의 환경 내 분포 및 거동: 물성, 환경 내 농도수준, 상 분배 및 장거리이동을 중심으로)

  • Kim, Seung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.143-164
    • /
    • 2008
  • Concern about perfluorinated compounds (PFCs) is growing nationally as well as globally. PFCs could be considered emerging POPs due to their environmentally persistent, bioaccumulative, and potentially harmful properties. Moreover. perfluoroalkylates (PFAs) such as PFOS and PFOA are reported to experience long-range transport (LRT) to the Arctic in spite of their low volatility and strong solubility. The possible pathways contributing to LRT have been proposed but are still in debate in combination with unclear source definition and uncertain physico-chemical properties. The environmental fate of PFCs is more complicated because of the presence of precursors that are degraded to PFAs and are extremely different from their daughters, PFAs. in physico-chemical properties. To what extent and through what pathways are human and wildlife exposed is determined by the environmental fate and distribution of PFCs. To define uncertainties in fate and distribution thus is critical to prevent erroneous policy and/or determination related with exposure and risk reduction. This article aimed to review controversy and/or uncertain issues for the environmental fate and distribution of PFCs and to prospect research topics necessary to dissolve uncertainties.

The Effect of Coating Thickness on the Electrochemical Properties of a Li-La-Ti-O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode

  • Lee, Hye-Jin;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3233-3237
    • /
    • 2010
  • A $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode was modified by coating with Li-La-Ti-O, and the effect of the coating thickness on their electrochemical properties was studied. The thickness of the coating on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ was increased by increasing the wt % of the coating material. The rate capability of the Li-La-Ti-O-coated electrode was superior to that of the pristine sample. 1- and 2-wt %-coated samples showed considerable improvement in capacity retention at high C rates. However, the rate capability of a 5-wt %-coated sample decreased. All the coated samples showed a high discharge capacity and slightly improved cyclic performance under a high cut-off voltage (4.8 V) condition. Results of a storage test confirmed that the Li-La-Ti-O coating layer was effective in suppressing the dissolution of the transition metals as it offered protection from the attack of the acidic electrolyte. In particular, the 2- and 5-wt %-coated samples showed a better protection effect than the 1-wt %-coated sample.

Evaluation on the Material Properties of Waterproof Concrete with Self-healing Admixture (자가치유형 구체방수 콘크리트의 기초물성 평가)

  • Jeon, Hong-Mim;Lee, Jong-Yun;Hong, Seok-Beom;Kim, Jin-Keun;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.415-416
    • /
    • 2009
  • Concrete with Self-healing Admixture provides waterproof protection by using a organic-inorganic chemical compound throughout the concrete. Using cement chemicals eliminate the need to use additional waterproofing, If crack is occurred, this system enhance self-healing ability to increase the structural safety. In this study, we investigate material properties to conclude mixture rate of concrete to apply a construction site.

  • PDF

A Study on the Surface Properties Test of the Grinding Disk Assembly for Crushing Materials in Secondary Cells (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 표면 특성 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • Metal raw materials and chemical additives, which are raw materials for secondary batteries, are pulverized by the high-speed rotation of the Grinding Disc of the Classifier Separator Mill (CSM). Grinding discs are required to withstand abrasion, corrosion, high-speed rotational force and impact. In order to analyze the stability of domestic and foreign grinding discs, quality tests including surface roughness, surface lubrication, surface state measurement, and surface 3D shape measurement were analyzed. When producing developed products, it shows that excellent products can be produced.

Properties of Pressure-Sensitive Rubber Adhesive in a Heat Shrinkable Sheet for the Protection of Welded Part of Gas Pipe Line (가스 배관 용접부 방식용 열 수축 쉬-트의 고무계 점착제 물성)

  • Song Sung-Ku;Hwang Kyu-Suk;Kim Wonho;Chung Kyung-Young;Bae Jong-Woo;Choi Heung-Hwan;Lee Seong-Min;Shin Sung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 1998
  • To increase peel strength, low temperature properties and flowability of pressure sensitive adhesives(PSA) used in a heat shrinkable sheet, these properties were evaluated by changing each components in type and content. In this study, Isobutylene-co-Isoprene Rubber (IIR) which has good wetherability was selected as a base polymer. Instead of rosin ester, petroleum resin was selected as a tackifier because of superior peel strength. By decreasing petroleum resin contents, flowability of PSA was decreased. High molecular weight of polybutene was better than low molecular weight for the peel strength of PSA. Large particle size of carbon black showed better properties than small one in peel strength and brittleness temperature. By adding calcium carbonate, the cost of compound was able to be reduced. But it must be used with carbon black.

  • PDF