• Title/Summary/Keyword: chemical profile

Search Result 801, Processing Time 0.026 seconds

Design and Optimization of TG-CVI Heater (TG-CVI용 히터 형상설계 및 최적화)

  • 이성호;홍성석;구형회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.244-249
    • /
    • 2000
  • Thermal gradient chemical vapor infiltration (TG-CVI) process, which is one of the CVI techniques to densify a porous fiber preform, requires for a heater to have uniform surface temperature distribution. Thus, it is essential to design the shape of the heater and to predict the temperature distribution when the heater has a profile which is not a simple cylinder. In this study, an analytical method has been used to design the inner profile of a conical heater showing uniform temperature distribution, if its outer shape is specified. Temperature distribution on the heater surface has been calculated with the finite difference method and compared with the experimental results. When a heater had a combined profile with a large cone and a small cylinder, temperature was higher in the cylindrical part. To reduce the temperature difference between these areas, a hole-machining method has been proposed including other possible ones. A shape design and optimization program has been made to improve the temperature uniformity of the TG-CVI heater better than that designed with the analytical method.

  • PDF

Studies on chemical wet etching of GaN (GaN계 질화합물 반도체의 습식식각 연구)

  • 윤관기;이성대;이일형;최용석;유순재;이진구
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.398-400
    • /
    • 1998
  • In this paper, the etching studies for n-GaN were carried out using the wet chemical, the photo-enhanced-chemical, and the electro-chemical etching methods. The experimental results show that n-GaN is etched in diluted NaOH solution at room temperture and the etched thickness of NaOH and electron concentrations. Te etching rate of n-GaN samples with n.simeq.1*10$^{19}$ cm$^{-3}$ were used to compare the photo-enhanced-chemical etching with the electrochemical etching methods. The removed thickness was 680.angs./25min by the electrochemical etching methods. The removed thickness was 680 .angs./25min by the electrochemical etching method ad 784.angs./25min by the photoenhanced-chemical etching method. The patterns are 100.mu.m*100.mu.m rectangulars covered with SiO$_{2}$film. It is shown that the profile of etched side-wall of the pattern is vertical without dependance of the n-GaN orientations.

  • PDF

Ab Initio Study of Mechanism of Forming Germanic Bis-Heterocyclic Compound between Dimethyl-Germylene Carbene (Me2Ge=C:) and Acetone

  • Lu, Xiuhui;Che, Xin;Lian, Zhenxia;Li, Yongqing
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dimethylgermylene carbene and acetone has been investigated with CCSD(T)//B3LYP/6-$31G^*$ method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel is that the two reactants firstly form a four-membered ring carbene (RC4) through the [2+2] cycloaddition reaction. Due to $sp^2$ hybridization of carbene C atom in RC4, RC4 further combines with acetone to form a reactant complexe (RC5). Due to the further $sp^3$ hybridization of carbene C atom in RC4, RC5 isomerizes to a germanic bisheterocyclic compound (P6) via the transition state (TS5).

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Growth and Characterization of Graphene Controlled by Cooling Profile Using Near IR CVD

  • Park, Yun-Jae;Im, Yeong-Jin;Kim, Jin-Hwan;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.207-207
    • /
    • 2013
  • 기존의 그래핀 성장에 관한 연구는 열화학기상증착법(Chemical vapor deposition; CVD)을 이용한다. 그래핀 성장 제어 요소로는 촉매 기판인 전이 금속[Ru, Ir, Co, Re, Pt, Pd, Ni, Cu], 기판 전처리 과정, 수소/메탄 가스 혼합비, 작업 진공 상태, 기판온도[$800{\sim}1,000^{\circ}C$, 냉각 속도 등으로 보고 되고 있다. 그래핀 성장 원리는 Cu 촉매 기판에 메탄 가스를 $1,000^{\circ}C$ 온도에서 분해해서 탄소를 고용 시킨 후 급랭하는 도중에 석출되는 탄소에 의해 그래핀 시트가 형성되는 것으로 알려져 있다. 기존의 CVD를 열원을 이용할 경우 내부 챔버에 생기는 잠열에 의해 cooling profile의 제어가 용이하지 않다. 본 연구에서는 근적외선(Near Infrared; NIR) 열원을 이용한 CVD로 챔버 내부 잠열을 최소화하고, 냉각 공정을 Natural, Linear, Convex cooling type으로 디자인해서 cooling profile 제어가 그래핀 성장에 미치는 영향을 연구 하였다. 이렇게 성장된 그래핀을 임의의 기판(SiO2, Glass, PET film) 위에 습식방법으로 전이 시킨 후, 전기적 구조적 및 광학적 특성을 면저항(four-point probe), 전계방사 주사전자현미경(Field Emission Scanning Electron Microscope; FE-SEM), 마이크로 라만 분광법(Micro Raman spectroscopy) 및 광학현미경(optical microscope), 투과도(UV/Vis spectrometer)의 측정으로 잠열이 최소화된 NIR-CVD에서 cooling profile에 따른 그래핀 성장을 평가하였다.

  • PDF

Th17 Responses Are not Induced in Dextran Sodium Sulfate Model of Acute Colitis

  • Kim, Yoon-Suk;Lee, Min-Ho;Ju, Ahn-Seung;Rhee, Ki-Jong
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.416-419
    • /
    • 2011
  • Dextran sodium sulfate (DSS) is a widely used chemical model for inflammatory bowel disease (IBD). It is thought that imbalances in the T helper (Th) cell subsets contribute to IBD. Recent studies suggest that the acute DSS-colitis model is polarized toward a Th1/Th17 profile based on RT-PCR analysis of colonic tissues. In the current study we determined whether colonic Th cells from DSS-colitis mice were skewed toward the Th17 profile. Mice were treated with 5% DSS for 7 days and colonic T cells isolated and examined for production of IFN-${\gamma}$ (Th1 cell), IL-4 (Th2 cell) and IL-17 (Th17 cell) by intracellular flow cytometry. We found that the percentage of colonic Th17 cells were similar to non-treated controls but the percentage of Th1 cells were elevated in DSS-colitis mice. These results suggest that in the acute DSS-colitis model the colonic Th cells exhibit a Th1 profile and not a Th17 profile.

Assessment of Changed Input Modules with SMOKE Model (SMOKE 모델의 입력 모듈 변경에 따른 영향 분석)

  • Kim, Ji-Young;Kim, Jeong-Soo;Hong, Ji-Hyung;Jung, Dong-Il;Ban, Soo-Jin;Lee, Yong-Mi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.284-299
    • /
    • 2008
  • Emission input modules was developed to produce emission input data and change some profiles for Sparse Matrix Operator Kernel Emissions (SMOKE) using Clean Air Policy Support System (CAPSS)'s activities and previous studies. Specially, this study was focused to improve chemical speciation and temporal allocation profiles of SMOKE. At first, SCC cord mapping was done. 579 SCC cords of CAPSS were matched with EPA's one. Temporal allocation profiles were changed using CAPSS monthly activities. And Chemical speciation profiles were substituted using Kang et al. (2000) and Lee et al. (2005) studies and Kim et al. (2005) study. Simulation in Seoul Metropolitan Area (Seoul, Incheon, Gyeonggi) using MM5, SMOKE and CMAQ modeling system was done for effect analysis of changed input modules of SMOKE. Emission model results adjusted with new input modules were slightly changed as compared to using EPA's default modules. SMOKE outputs shows that aldehyde emissions were decreased 4.78% after changing chemical profiles, increased 0.85% after implementing new temporal profiles. Toluene emissions were decreased 18.56% by changing chemical speciation profiles, increased 0.67% by replacing temporal profiles as well. Simulated results of air quality were also slightly elevated by using new input modules. Continuous accumulation of domestic data and studies to develop input system for air quality modeling would produce more improved results of air quality prediction.

Ab Initio Study of Mechanism of Forming Spiro-Ge-Heterocyclic Ring Compound From C2Ge=Ge: and Formaldehyde

  • Lu, Xiuhui;Li, Yongqing;Ming, Jingjing
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3690-3694
    • /
    • 2013
  • The $H_2Ge=Ge:$ and its derivatives ($X_2Ge=Ge:$, X = H, Me, F, Cl, Br, Ph, Ar${\ldots}{\ldots}$) is a new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet state Cl2Ge=Ge: and formaldehyde has been investigated with CCSD(T)//MP2/$6-31G^*$ method. From the potential energy profile, it could be predicted that the reaction has only one dominant reaction pathway. The reaction rule presented is that the two reactants first form a fourmembered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ${\pi}$ orbital of formaldehyde forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge: atom in intermediate hybridizes to an $sp^3$ hybrid orbital after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between $H_2Ge=Ge:$ and formaldehyde, and laid the theory foundation of the cycloaddition reaction between $H_2Ge=Ge:$ and its derivatives ($X_2Ge=Ge:$, X = H, Me, F, Cl, Br, Ph, Ar${\ldots}{\ldots}$) and asymmetric ${\pi}$-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds. The study extends research area and enriches the research content of germylene chemistry.

Perspective on substance identification in REACH (EU REACH의 물질확인 방법론 고찰)

  • Ra, Jin-Sung;Park, Kwang Seo;Choe, Eun Kyung;Kim, Sanghun
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.99-114
    • /
    • 2021
  • Substance identification is the first step in implementing chemical legislation, such that subsequent hazard and risk assessments can be accurately followed. Based on the web page and related guidance documents of the European Chemicals Agency and available consortia information, the procedure for substance identification carried out in Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) is surveyed. In this study, the importance of substance identification and substance sameness check, as well as the necessity of generating a substance identity profile (SIP) are considered. In addition, the SIPs of several substance types are presented, which focused on information utilization in the instrumental analysis results and organization of information to generate the SIP. Analytical science can contribute to the accurate and effective implementation of chemical regulation at the starting stage of substance identification. However, understanding of the regulation and consequent final wrap-up of analytical results as a SIP should be followed for communication among registrants in Substance Information Exchange Forum (SIEF) as well as with related authorities.