Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.1.89

Ab Initio Study of Mechanism of Forming Germanic Bis-Heterocyclic Compound between Dimethyl-Germylene Carbene (Me2Ge=C:) and Acetone  

Lu, Xiuhui (School of Chemistry and Chemical Engineering, University of Jinan)
Che, Xin (School of Chemistry and Chemical Engineering, University of Jinan)
Lian, Zhenxia (School of Chemistry and Chemical Engineering, University of Jinan)
Li, Yongqing (School of Chemistry and Chemical Engineering, University of Jinan)
Publication Information
Abstract
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet dimethylgermylene carbene and acetone has been investigated with CCSD(T)//B3LYP/6-$31G^*$ method. From the potential energy profile, it can be predicted that, this reaction has one dominant channel. The presented rule of this dominant channel is that the two reactants firstly form a four-membered ring carbene (RC4) through the [2+2] cycloaddition reaction. Due to $sp^2$ hybridization of carbene C atom in RC4, RC4 further combines with acetone to form a reactant complexe (RC5). Due to the further $sp^3$ hybridization of carbene C atom in RC4, RC5 isomerizes to a germanic bisheterocyclic compound (P6) via the transition state (TS5).
Keywords
Dimethyl-germylene carbene; Cycloadditional reaction; Potential energy surface;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Stang, P. J. Acc. Chem. Res. 1982, 15, 348.   DOI
2 Stang, P. J. Chem. Rev. 1978, 78, 384.
3 Krishnan, R.; Frisch, M. J.; Pople, J. A. Chem. Phys. Lett. 1981, 79, 408.   DOI   ScienceOn
4 Frisch, M. J.; Krishnan, R.; Pople, J. A. Chem. Phys. Lett. 1981, 81, 421.   DOI   ScienceOn
5 Wardrop, D. J.; Zhang, W. Tetrahedron Lett. 2002, 43, 5389.   DOI   ScienceOn
6 Feldman, K. S.; Perkins, A. L. Tetrahedron Lett. 2001, 42, 6031.   DOI   ScienceOn
7 Apeloig, Y.; Karni, M.; Tang, S. P. J.; Fox, D. P. J. Am. Chem. Soc. 1983, 105, 4781.   DOI   ScienceOn
8 Fox, D. P.; Tang, S. P. J.; Apeloig, Y.; Karni, M. J. Am. Chem. Soc. 1986, 108, 750.   DOI
9 Lu, X. H.; Wang, Y. X. J. Phys. Chem. A 2003, 107, 7885.   DOI   ScienceOn
10 Lu, X. H.; Wang, Y. X.; J. Mol. Struct. Theochem 2004, 686, 207.   DOI   ScienceOn
11 Lu, X. H.; Wu, W. R.; Yu, H. B.; Yang, X. L.; Xu, Y. H. J. Mol. Struct. Theochem 2005, 755, 39.   DOI   ScienceOn
12 Lu, X. H.; Yu, H. B.; Wu, W. R.; Xu, Y. H. Int. J. Quantum Chem. 2007, 107, 451.   DOI   ScienceOn
13 Lu, X. H.; Xiang, P. P.; Wu, W. R.; Che, X. J. Mol. Struct. Theochem 2008, 853, 82.   DOI   ScienceOn
14 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
15 Fukui, K. J. Phys. Chem. 1970, 74, 4161.   DOI
16 Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1981, 66, 2153.