• Title/Summary/Keyword: chemical oxide

Search Result 3,459, Processing Time 0.037 seconds

Fluid Flow in Plasma Deposition Reactor and Characteristics of Titanium Oxide Films Deposited at Room Temperature (플라즈마 증착 반응기에서 유체흐름과 상온에서 증착된 티타늄 산화막 특성)

  • Jung, Ilhyun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.438-443
    • /
    • 2007
  • Titanium oxide films were deposited by the HCP (hollow cathode plasma) reactor at room temperature. With results of simulation about HCP reactor, the temperature profile is uniform on substrate regardless of the heat generation at cathode. The velocity profile on the surface of substrate is more uniform with increasing the gap between cathode and substrate, and surface roughness was decreased with increasing the gap between cathode and substrate. We could confirm that the composition of oxide increased with RF-power, and the ratio of O to Ti in the films was about 2 : 1 at RF-power of 240 watt and distance between cathode and substrate of 3 cm.

A Study on Characteristics of HRSG Boiler Inner Tube Scale (HRSG 보일러 튜브 내면 스케일의 특성연구)

  • Lee, Seung-Min;MIN, Byung-Yeon;JEONG, Nyeon-Ho
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.82-88
    • /
    • 2012
  • The thickness and chemical composition of oxides on heat recovery steam generator tubes of combined cycle power plant were examined in order to evaluate the corrosion of the tubes. Tubes were removed from the plant after actual operations for 21,482, 42,552 and 56,123 hours respectively. Thickness and growth rate of the oxide scale on reheater inner tube (SA213-T22) were very high compared to those other tubes. The oxide scale was about $250{\mu}m$ thick and uniform. The components of the scale were iron oxides. The oxide scale was mixed oxides consisting of magnetite$(Fe_3O_4)$ and hematite$(Fe_2O_3)$. The oxide on inner tube was removed using many kinds of chemicals and it was found that chelating agents were dissolved faster than other chemicals.

Water Splitting Capacity Improvement of Mn-Fe Oxide Prepared by Ball Milling with $ZrO_2$

  • Kang, Kyoung-Soo;Cho, Mi-Sun;Kim, Chang-Hee;Park, Chu-Sik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1122-1123
    • /
    • 2006
  • Mn-Fe oxide and Mn-Fe oxide/$ZrO_2$(50wt%/50wt%) were prepared by ball milling method. XRD data of the prepared samples revealed that hematite and ferrite phase coexisted. Water splitting at 1273K, after thermal reduction at 1573K, was performed 4 times for the samples. Hydrogen production amount was analyzed by GC with TCD detector. Water splitting capacity of Mn-Fe oxide was improved by ball milling with $ZrO_2$.

  • PDF

Patterning of Diamond Micro-Columns

  • Cho, Hun-Suk;Baik, Young-Joon;Chung, Bo-Keon;Lee, Ju-Yong;Jeon, D.;So, Dae-Hwa
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.34-36
    • /
    • 1997
  • We have fabricated a patterned diamond field emitter on a silicon substrate. Fine diamond particles were planted on a silicon wafer using conventional scratch method. A silicon oxide film was deposited on the substrate seeded with diamond powder. An array of holes was patterned on the silicon oxide film using VLSI processing technology. Diamond grains were grown using a microwave plasma-assisted chemical vapor deposition. Because diamond could not grow on the silicon oxide barrier, diamond grains filled only the patterned holes in the silicon oxide film, resulting in an array of diamond tips.

  • PDF

Influence of Compositions on Sol-Gel Derived Amorphous In-Ga-Zn Oxide Semiconductor Transistors

  • Kim, Dong-Jo;Koo, Chang-Young;Song, Keun-Kyu;Jeong, Young-Min;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1586-1589
    • /
    • 2009
  • We investigated the influence of chemical compositions of gallium and indium cations on the performance of solgel derived amorphous gallium indium zinc oxide (a-GIZO) based thin-film transistors (TFTs). Systematical composition study allows us to understand the solutionprocessed a-GIZO TFTs. Understanding of the compositional influence can be utilized for tailoring the solution processed amorphous oxide TFTs for the specific applications.

  • PDF

3-dimensional nanostructured ZnO gas sensor (3차원 ZnO 나노구조체 가스센서)

  • Park, Yong-Wook;Shin, Hyun-Yong;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.356-360
    • /
    • 2010
  • Due to the high surface-to-volume ratio, the 3-dimensional(3D) nanostructures of metal oxides are regarded as the best candidate materials for the chemical gas sensors. Here we have synthesised flower-like 3D zinc oxide nanostructures through a simple hydrothermal route. Specific surface area of the 3D zinc oxide nanostructures synthesised in different pH values from 9.0 to 12.0 were evaluated by using a BET analyzer and the results were compared with that of a zinc oxide thin film fabricated by rf sputtering. Using interdigitated electrodes, superior CO gas sensing properties of the 3D zinc oxide nanostructures on the ZnO thin film to those of the ZnO thin film were demonstrated.

Aluminum Oxide Nano-Rings Synthesized by Electrospinning Techniques

  • Jo, Jun-Mo;Park, Ju-Yeon;Go, Seong-Wi;Kim, Don;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.102-102
    • /
    • 2010
  • One or two-dimensional nanostructures such as nanowires or nanomats have been widely uses as building blocks for nanoscale electronic devices. Nanofiber is one of sub-category of nano structures, it is easy to make nano-sized fiber by electrospinning technique. Nanofiber has large surface area as compared with their volume, it could be widely applied to many areas easily. Electrospinning technique is easy to control their structures and morphology safely and cost-effectively. We made nano-rings as a model of one dimensional nanostructures by electrospinning technique. To our knowledge, there were no reports on the preparation and investigation of alumina nano-rings by electrospinning technique. In this study, aluminum oxide nano-rings were produced after electospinning and calcination. The synthesized aluminum oxide nano-rings were characterized by scanning electron microscopy (SEM) to identify the morphology and the diameter of the ring, X-ray diffraction (XRD) to verify the crystallinity of the aluminum oxide, and X-ray photoelectron spectroscopy (XPS) for investigation of the chemical nature of the synthesized nano-rings.

  • PDF

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E.;Yigit, E.;Biber, Z.S.;Kaya, H.
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850143.1-1850143.9
    • /
    • 2018
  • Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.

A Study on Surface Growth Direction and Particle Shape According to the Amount of Oxygen and Deposition Parameters

  • Jeong, Jin;Kim, Seung Hee
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.209-211
    • /
    • 2018
  • A zinc oxide thin film doped with aluminum was deposited by RF sputtering. The deposition temperature of the sputter chamber was kept constant at $350^{\circ}C$, the power supplied to the chamber was 75 W, the oxygen flow rate was changed to 10 sccm and 20 sccm, and the thin film deposition time was changed to 120 and 180 minutes. The structures of the deposited zinc oxide thin films were analyzed by van der Waals method using an X-ray diffractometer. As a result of X-ray diffraction, the amount of oxygen supplied to the zinc oxide thin film increased, and the surface growth of the (002), (400), (110), and (103) planes showed a change with increasing deposition time. Moreover, as the amount of oxygen supplied to the zinc oxide thin film increased, their shape was observed to be coarse, and the thin film' s particles shape was correlated with the oxygen chemical defect introduced.

A Study on Indium Gallium Oxide Thin Film Transistors prepared by a Solution-based Deposition Method (저온 용액공정을 이용한 인듐갈륨 산화물(IGO) 박막트랜지스터 제조 및 특성 연구)

  • Bae, Eunjin;Lee, Jin Young;Han, Seung-Yeol;Chang, Chih-Hung;Ryu, Si Ok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.600-604
    • /
    • 2011
  • Solution processed IGO thin films were prepared using a general chemical solution route by spin coating. The effect of the annealing temperature of IGO thin films based on the ratio of 2:1 of indium to gallium on crystallization was investigated with varying annealing temperature from $300^{\circ}C$ to $600^{\circ}C$. The electronic device characteristic of IGO thin film was investigated. The solution-processed IGO TFTs annealed at 300 and $600^{\circ}C$ in air for 1 h exhibited good electronic performances with field effect mobilities as high as 0.34 and 3.83 $cm^2/V{\cdot}s$, respectively. The on/off ratio of the IGO TFT in this work was $10^5$ with 98% transmittance.