• Title/Summary/Keyword: chemical degradation

Search Result 1,644, Processing Time 0.026 seconds

Degradation of Nafion Membrane by Oxygen Radical (산소 라디칼에 의한 Nafion 막의 열화)

  • Kim, Taehee;Lee, Junghun;Cho, Gyoujin;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.597-601
    • /
    • 2006
  • The degradation of the Nafion membrane by oxygen radical (OH, $HO_2$) was investigated in Polymer electrolyte membrane fuel cell (PEMFC). Nafion membrane was degraded in Fenton solution consisted with hydrogen peroxide (10-30%) and ferrous ion (1-4 ppm) at $80^{\circ}C$. After degradation in Fenton solution, C-F, S-O and C-O chemical bonds of membrane were broken by oxygen radical attack. Breaking of C-F bond reduced the mechanical strength of Nafion membrane, and hence induced pinholes, resulting in increase of $H_2$ crossover through the membrane. Decomposition of S-O and C-O bonds decreased the ion exchange capacity of the electrolyte membrane. The performance of unit cell composed the membrane, which was degraded in 30% $H_2O_2$ with 4ppm $Fe^{2+}$ solution for 48 hr, was about half times as low as one with normal membrane.

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells (고분자연료전지의 화학적/기계적 내구성 평가 시간 단축)

  • Sohyeong Oh;Donggeun Yoo;Kim Myeonghwan;Park Jiyong;Choi Yeongjin;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.517-522
    • /
    • 2023
  • A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.

Effects of Salicylate and Glucose on Biodegradation of Phenanthrene by Burkholderia cepacia PM07

  • LEE DAE SUNG;LEE MIN WOO;WOO SEUNG HAN;PARK JONG MOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.859-865
    • /
    • 2005
  • The stimulatory effects of exogenous salicylate as a pathway inducer on phenanthrene biodegradation were investigated using Burkholderia cepacia PM07. The phenanthrene degradation rate was greatly enhanced by increasing the salicylate additions, and the maximum rate was 19.6 mg $I^{-1}\;d^{-1}$ with the addition of 200 mg $I^{-1}$ of salicylate, 3.5 times higher than that (5.6 mg $I^{-1}\;d^{-1}$) without the addition of salicylate. The degradation rate was decreased at higher concentrations of salicylate (above 500 mg$I^{-1}$), and cell growth was significantly inhibited. The phenanthrene degradation was not affected by increasing glucose up to 2 g $I^{-1}$, although dramatic microbial growth was obtained. The stimulatory effect of exogenous salicylate decreased in the presence of glucose. After the addition of 200 mg $I^{-1}$ of salicylate, approximately $60\%$ of the initial phenanthrene (50 mg $I^{-1}$) was degraded after 96 h. However, with extra addition of 200 mg $I^{-1}$ of glucose, the phenanthrene degradation rate decreased, and only $18.5\%$ of the initial phenanthrene was degraded.

Liquid-phase Thermal Degradation Properties of Waste Plastic Film (폐플라스틱 필름의 액상 열분해 특성에 관한 연구)

  • Hwang, T.S.;Kim, Y.S.;Kang, T.W.;Hwang, E.H.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.116-121
    • /
    • 2003
  • In this study, the thermal degradation process has been investigated at various reaction temperature$(350{\sim}400^{\circ}C)$ and times$(30{\sim}120\;min)$ in order to recycle waste plastic films as solid state wax. Waste plastic films were easily melted by adding a small amount of waxes. The effects of wax addition and nitrogen flow rate on their thermal degradation properties were investigated. FT-IR, GPC and viscometer were used to analyze properties of the solid wax including the structure, molicular weight distribution and melt viscosity. The average molecular weight of solid wax was decreased with increasing the reaction time, temperature and amount of wax added, Also, the viscosity of solid wax decreased with increasing the stirring speed at a constant reaction temperature and time, and its viscosity got close to zero above $390^{\circ}C$.

  • PDF

Electrochemical degradation of Orange G in K2SO4 and KCl medium

  • Hamous, Hanene;Khenifi, Aicha;Bouberka, Zohra;Derriche, Zoubir
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.571-578
    • /
    • 2020
  • In this work, a detailed study on the electrochemical degradation of an azo dye, Orange G is performed using a platinum electrode. Indeed, the influence of the dye concentration (50-150 mg/L), the pH of the medium and the density of the electric current is studied on the rate of discoloration, the rate of mineralization, the efficiency of the electric current and the energy consumption. The UV-visible spectra of OG plotted against the degradation time show the decrease of the intensity of the characteristic dye peaks. In an environment rich in chlorides, all peaks disappear after 15 min of degradation. However, the peaks at wavelengths of 200 and 290 nm appeared after one hour of treatment. In K2SO4, the eliminated percentages are respectively 46, 54 and 61% for wavelengths of 245, 330 and 480 nm. This suggests that the degradation mechanisms in K2SO4 and KCl environments are not the same. In the middle rich in chlorides, the eliminated percentage of OG did not seem to be affected by the concentrations increase. These results confirm the hypothesis that electrochemical oxidation process is very favorable for concentrated pollutants discharge.

Linear Regression Analysis of Tensile Performance for the Polyurethane Coating Waterproofing Material Periodically Exposed to Chemical Degradation (회귀 분석을 통한 폴리우레탄 도막방수재의 장기 화학 열화조건에 따른 인장성능 변화 지표)

  • Ju, Hee-Jeong;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.455-461
    • /
    • 2018
  • The purpose of this study is to evaluate the tensile strength performance of the polyurethane coating material used as the waterproofing material in concrete structures. A linear regression equation is proposed to establish a correlation on the tensile strength of polyurethane coating membrane against periodic exposure to chemical degradation. The polyurethane film membrane showed a minimum strength of 23% to a maximum of 38% when subjected to chemical degradation. The elongation rate showed a relation with the tensile strength deterioration rate of at least 15% to 22% at maximum, and the proposed regression equation could be used to predict the degree of performance change of the polyurethane coating membrane under chemical degradation condition.

Degradation of MEA and Characteristics of Outlet Water According to Operation Condition in PEMFC (고분자 전해질 연료전지 구동 조건에 따른 MEA 열화 및 배출수 특성)

  • Hwang, Byungchan;Lee, Sehoon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • Humidity control of proton exchange membrane fuel cell(PEMFC) is very important control condition during driving. In terms of water management, low humidification conditions are advantageous, and high humidification is advantageous in terms of drainage utilization and energy efficiency. In this study, the characteristics of outlet water in low humidification and high humidification process were studied in terms of utilization of discharged water. Since the impurities in the effluent are generated during the degradation of the membrane and the electrode assembly(MEA), degradation of the MEA under low humidification and high humidification conditions was also studied. The rate of radical generation was high at low humidification condition of the anode RH 0%, which showed that it was the main cause of the degradation of the polymer membrane. Analysis of effluent showed low concentration of fluoride ion concentration of about 20 ppb at high humidification (both electrodes RH 100%) and 0.6 V, which was enough to be used as the feed water for electrolysis. Very low concentration of platinum below 0.2 ppb was detected in the condensate discharged from the high humidification condition.

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Jang, Sung-Woo;Yang, Eun-Kyung;Jin, Sung-Il;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.833-838
    • /
    • 2012
  • The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

Photocatalytic degradation of TCE using solar energy in POFR (플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해)

  • Jeong, Hee-Rok;Moon, Il;Joo, Hyun-Ku;Jun, Myung-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2002
  • The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

The Analysis of Surface Degradation Mechanism on PRP(epoxy/glass fiber) by Corona Charging Properties (코로나 대전 특성을 이용한 FRP의 표면 열화메커니즘의 해석)

  • Lee, Baek-Su;Im, Gyeong-Beom;Jeong, Ui-Nam;Park, Jong-Gwan;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.373-378
    • /
    • 1999
  • In order to analyse the degradation mechanism of polymer materials for outdoor condition, FRP laminate was exposed to high temperature and ultraviolet rays. Then, thedegradation process was evaluated by comparing contact angle, surface potential decay, and polarity effect respectively. Especially, the analysis of surface degradation phenomena by corona charging method showed the exact correlation with the result of chemical properties. Therefore we can confirm that the application of corona charging method on the identification of degradation process is very useful. If this method is usedin degradation studies on the polymer surface, it will be more effective on the surface analysis of polymer insulators. With corona charging method and chemical spectrum analysis, it was possible concretely to define degradation process on the polymer surface exposed at the situation of different environmental conditions.

  • PDF