DOI QR코드

DOI QR Code

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Received : 2011.12.19
  • Accepted : 2011.12.23
  • Published : 2012.03.20

Abstract

The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

Keywords

References

  1. Traub, H. L.; Hirt, P.; Herlinger, H.; Oppermann, W. Angew. Makromol. Chem. 1995, 230, 179. https://doi.org/10.1002/apmc.1995.052300113
  2. Montaudo, G.; Puglisi, C.; Samperi, F. Polymer Degradation and Stability 1991, 31, 291. https://doi.org/10.1016/0141-3910(91)90039-T
  3. Khemani, K. C. Polymer Degradation and Stability 2000, 67, 91. https://doi.org/10.1016/S0141-3910(99)00097-X
  4. Dzieciol, M.; Trzeszczynski, J. J. Appl. Polym. Sci. 2000, 77, 1894. https://doi.org/10.1002/1097-4628(20000829)77:9<1894::AID-APP5>3.0.CO;2-Y
  5. Holland, B. J.; Hay, J. N. Polymer 2002, 43, 1835. https://doi.org/10.1016/S0032-3861(01)00775-3
  6. Al-AbdulRazzak, S.; Jabarin, S. A. Polym. Int. 2002, 51, 164. https://doi.org/10.1002/pi.813
  7. MacDonald, W. A. Polym. Int. 2002, 51, 923. https://doi.org/10.1002/pi.917
  8. Montaudo, G.; Puglisi, C.; Samperi, F. Polymer Degradation and Stability 1993, 42, 13. https://doi.org/10.1016/0141-3910(93)90021-A
  9. Botelho, G.; Queiro's, A.; Liberal, S.; Gijsman, P. Polymer Degradation and Stability 2001, 74, 39. https://doi.org/10.1016/S0141-3910(01)00088-X
  10. Bennekom, A. C. M.; Willemsen, P. A. A. T.; Gaymans, R. J. Polymer 1996, 37, 5447. https://doi.org/10.1016/S0032-3861(96)00355-2
  11. Manabe, N.; Yokota, Y. Polymer Degradation and Stability 2000, 69, 183. https://doi.org/10.1016/S0141-3910(00)00059-8
  12. Koshiduka, T.; Ohkawa, T.; Takeda, K. Polymer Degradation and Stability 2003, 79, 1. https://doi.org/10.1016/S0141-3910(02)00228-8
  13. Wang, X. S.; Li, X. G.; Yan, D. Polymer Degradation and Stability 2000, 69, 361. https://doi.org/10.1016/S0141-3910(00)00083-5
  14. Wang, X. S.; Li, X. G.; Yan, D. J. Appl. Polym. Sci. 2002, 84, 1600. https://doi.org/10.1002/app.10476
  15. Kelsey, D. R.; Kiibler, K. S.; Tutunjian, P. N. Polymer 2005, 46, 8937. https://doi.org/10.1016/j.polymer.2005.07.015
  16. Samperi, F.; Puglisi, C.; Alicatk, R.; Montaudo, G. Polymer Degradation and Stability 2004, 83, 3 https://doi.org/10.1016/S0141-3910(03)00166-6
  17. Samperi, F.; Puglisi, C.; Alicatk, R.; Montaudo, G. Polymer Degradation and Stability 2004, 83, 11. https://doi.org/10.1016/S0141-3910(03)00167-8
  18. Zimmerman, H.; Kim, N. T. Polym. Eng. Sci. 1980, 20, 680. https://doi.org/10.1002/pen.760201008
  19. Yang, E. K.; Jang, S.; Cho, Y. D.; Choe, E. K.; Park, C. R. Bull. Korean Chem. Soc. 2011, 32, 477. https://doi.org/10.5012/bkcs.2011.32.2.477
  20. Benson, S. W. Thermochemical Kinetics; John Wiley & Sons: New York, 1976.

Cited by

  1. MALDI-TOF Analysis of Polyhexamethylene Guanidine (PHMG) Oligomers Used as a Commercial Antibacterial Humidifier Disinfectant vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1708
  2. Mechanical and Thermo-Physical Properties of Short Glass Fiber Reinforced Polybutylene Terephthalate upon Aging in Lubricant/Refrigerant Mixture vol.19, pp.6, 2016, https://doi.org/10.1590/1980-5373-mr-2016-0339
  3. Separation, characterization and identification of microplastics and nanoplastics in the environment vol.721, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2020.137561
  4. Progress, prospects, and challenges in standardization of sampling and analysis of micro- and nano-plastics in the environment vol.325, pp.None, 2012, https://doi.org/10.1016/j.jclepro.2021.129321