Browse > Article

Effects of Salicylate and Glucose on Biodegradation of Phenanthrene by Burkholderia cepacia PM07  

LEE DAE SUNG (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology)
LEE MIN WOO (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology)
WOO SEUNG HAN (Department of Chemical Engineering, Hanbat National University)
PARK JONG MOON (Department of Chemical Engineering, School of Environmental Science and Engineering, Pohang University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.4, 2005 , pp. 859-865 More about this Journal
Abstract
The stimulatory effects of exogenous salicylate as a pathway inducer on phenanthrene biodegradation were investigated using Burkholderia cepacia PM07. The phenanthrene degradation rate was greatly enhanced by increasing the salicylate additions, and the maximum rate was 19.6 mg $I^{-1}\;d^{-1}$ with the addition of 200 mg $I^{-1}$ of salicylate, 3.5 times higher than that (5.6 mg $I^{-1}\;d^{-1}$) without the addition of salicylate. The degradation rate was decreased at higher concentrations of salicylate (above 500 mg$I^{-1}$), and cell growth was significantly inhibited. The phenanthrene degradation was not affected by increasing glucose up to 2 g $I^{-1}$, although dramatic microbial growth was obtained. The stimulatory effect of exogenous salicylate decreased in the presence of glucose. After the addition of 200 mg $I^{-1}$ of salicylate, approximately $60\%$ of the initial phenanthrene (50 mg $I^{-1}$) was degraded after 96 h. However, with extra addition of 200 mg $I^{-1}$ of glucose, the phenanthrene degradation rate decreased, and only $18.5\%$ of the initial phenanthrene was degraded.
Keywords
Biodegradation; bioremediation; induction; glucose; phenanthrene; salicylate;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Baek, K. H., H. S. Kim, H. H. Moon, J. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H 17-1. J. Microbiol. Biotechnol. 14: 901-905
2 Carmichael, L. M. and F. K. Pfaender. 1997. The effect of inorganic and organic supplements on the microbialdegradation of phenanthrene and pyrene in soils. Biodegradation 8:1-13   DOI   ScienceOn
3 Cidaria, D., F. Deidda, and A. Bosett. 1994. A rapid method for naphthalene dioxygenase assay in whole cells of naphthalene cis-dihydrodiols dehydrogenase blocked Pseudomonas fluorescens: Screening of potential inducers of dioxygenase activity. Appl. Microbiol. Biotechnol. 41: 689-693
4 Marcoux, J., E. Deziel, R. Villemur, F. Lepine, J. G Bisaillon, and R. Beaudet. 2000. Optimization of high-molecularweight polycyclic aromatic hydrocarbons' degradation in a two-liquid-phase bioreactor. J. Appl. Microbiol. 88: 655-662   DOI   ScienceOn
5 Mihe1cic, J. R. and R. G. Luthy. 1993. Bioavailability of sorbed- and separate phase chemicals. Biodegradation 4: 141-153   DOI   ScienceOn
6 Oh, Y. S., D. S. Sim, and S. J. Kim. 2003. Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J. Microbiol. Biotechnol. 13: 437-443
7 Rittmann, B. E., B. F. Smets, and D. A. Stahl. 1990. The role of genes in biological processes: Part J. Environ. Sci. Technol. 24: 23-29   DOI
8 Tam, N. F. Y., C. L. Guo, W. Y. Yau, and Y. S. Wong. 2002. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong, Mar. Pollut. Bull. 45: 316-324   DOI   ScienceOn
9 Trzesicka-Mlynarz, D. and O. P. Ward. 1995. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures obtained from PAHcontaminated soil. Can. J. Microbiol. 41: 470-476   DOI   ScienceOn
10 Woo, S. H. and J. M. Park. 1999. Evaluation of drum bioreactor performance used for decontamination of soil polluted with polycyclic aromatic hydrocarbons. J. Chem. Technol. Biotech. 74: 937-944   DOI   ScienceOn
11 Smith, M. R. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1: 191-206   DOI   ScienceOn
12 Mahaffey, W. R., D. T. Gibson, and C. E. Cerniglia. 1988. Bacterial oxidation of chemical carcinogens: Formation of polycyclic aromatics acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415-2423
13 Wong, J. W. C., K. M. Lai, C. K. Wan, K. K. Ma, and M. Fang. 2002. Isolation and optimization of PAH-degradative bacteria from contaminated soil for PAHs bioremediation, Water Air Soil Pollut. 139: 1-13   DOI   ScienceOn
14 Han, K. D., Y. T. Jung, and S. Y. Son. 2003. Phylogeneticanalysis of phenanthrene-degrading Sphingomonas. J. Microbiol. Biotechnol. 13: 942-948
15 Ogunseitan, O. A., J. L. Delgado, Y. L. Tsai, and B. H. Olson. 1991. Effect of 2-hydroxybenzoate on the maintenance of naphthalene degrading Pseudomonads in seeded and un seeded soil. Appl. Environ. Microbiol. 57: 2873-2879
16 Chen, S. H. and M. D. Aitken. 1999. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccarophila PIS. Environ. Sci. Technol. 33: 435-439   DOI   ScienceOn
17 Woo, S. H. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
18 Ogunseitan, O. A. and B. H. Olson. 1993. Effect of 2hydroxybenzoate on the rate of naphthalene mineralization in soil. Appl. Microbiol. Biotechnol. 38: 799-807   DOI   ScienceOn
19 Mulder, H., A. M. Breure, J. G Van Andel, J. T. C. Grotenhuis, and W. H. Rulkens. 1998. Influence of hydrodynamic conditions on naphthalene dissolution and subsequent biodegradation. Biotechnol. Bioeng. 57: 145-154   DOI   ScienceOn
20 Stringfellow, W. T., S. T. Chen, and M. D. Aitken. 1995. Induction of PAH degradation in a phenanthrene-degrading pseudomonad, pp. 83-90. In Hinchee, R. E., Vogel, C. M. and Brockman, F. J. (eds.). Microbial Processes for Biorernediation. Columbus, OH, USA: Battelle Press
21 Bossert, I. D. and R. Bartha. 1986. Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Tox. 37: 495-495
22 Woo, S. H., J. M. Park, and B. E. Rittmann. 2001. Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems. Biotechnol. Bioeng. 73: 12-24   DOI   ScienceOn
23 Yuan, S. Y., S. H. Wei, and B. V. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chernosphere 41: 1463-1468
24 Zaidi, B. R. and S. H. Imam. 1999. Factors affecting microbial degradation of polycyclic aromatic hydrocarbon phenanthrene in the Caribbean coastal water. Mar. Poll. Bull. 38: 737-742   DOI   ScienceOn