• 제목/요약/키워드: chemical composition physical properties

검색결과 321건 처리시간 0.025초

Study on the Change of Physical Properties with Silica Contents in Solution Styrene-Butadiene Rubber (SSBR)/Silica Composites

  • Kim, Tae Yeop;Won, Sung Yeon;Kang, Shin Hye;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.17-21
    • /
    • 2017
  • The optimum mixing conditions of silica and silane containing rubber composites were evaluated by investigating the properties of rubber composites prepared with a silica composition of 10, 20, 40, 60, and 80 g, respectively. The crosslinking rate decreased with increasing silica content, with he promoters being adsorbed on the silica surface with in the rubber composite. As a result, the increase in crosslinking time resulted in the destruction of the silica structure. The increase of the bound rubber content due to the destruction of the silica structure inhibited the chain motion of the polymer molecules and reduced the cohesion of the silica itself. Finally, the increase of silica content showed the increase of hardness, tensile strength, and storage modulus of rubber composites.

Evaluation of the Basic Properties for the Korean Major Domestic Wood Species I. Korean Red Pine (Pinus densiflora) in Pyeongchang-gun, Gangwon-do

  • Yonggun PARK;Chul-ki KIM;Hanseob JEONG;Hyun Mi LEE;Kwang-Mo KIM;In-Hwan LEE;Min-Ji KIM;Gyu Bin KWON;Nayoung YOON;Namhee LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권1호
    • /
    • pp.87-100
    • /
    • 2024
  • Wood has different properties depending on the species or growth area. Therefore, in order to use wood efficiently, it is necessary to have a proper understanding of the characteristics of wood depending on the species and the appropriate use for them. In particular, in order to effectively use more than 1,000 species of woody plants in South Korea as wood, it is necessary to evaluate the characteristics of various Korean domestic woods and make a database of them. In this study, the anatomical properties (length and width of tracheid, cell wall thickness), physical properties (specific gravity and shrinkage), mechanical properties (bending strength, compressive strength, tensile strength, shear strength, hardness), and chemical composition (ash, extract, lignin, total sugar content) of Korean red pine which was grown in Pyeongchang-gun, Gangwon-do, South Korea were evaluated.

LIQUID CRYSTALLINE POLYURETHANES. PHYSICOCHEMICAL CHARACTERISTICS AND PERVAPORATION PROPERTIES

  • A-Grabczyk, Aleksandra Wolibsk
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 춘계 총회 및 학술발표회
    • /
    • pp.30-32
    • /
    • 1996
  • Although the transport of small molecules through polymer membranes has been extensively studied for a long time, understanding of the transport mechanism is still far from satisfactory. This in turn makes difflcult the search for new membrane materials with the desired transport characteristics. Therefore it is of the utmost interest to study the correlations between a polymer's structure and morphology and its transport properties. Generally, polyurethanes serve as excellent polymer materials for such studies since their physical and chemical properties can be widely and systematically modified by varying the length, composition and chemical structure of the hard and soft segments. In this paper liquid crystalline polyurethanes are presented as new membrane materials for liquld separation and their transport properties with respect to molecular and supermolecular-structure are discussed.

  • PDF

정동진 의사글레이층의 입도와 화학 조성에 대한 연구 (A Study on the Granulometry and Chemical Composition of Psudo-Gleized Soil in Jeongdongjin Area)

  • 김종연
    • 한국지형학회지
    • /
    • 제24권3호
    • /
    • pp.27-45
    • /
    • 2017
  • At the upper part of terrace deposits at Jeongdongjin area, there is a structure in which reddish brown and grayish white layers laying horizontally. Previous studies have reported the existence of these structures within the deposits and suggested the theoretical background related to the formation process. However, the analysis of physical properties and chemical composition such as particle size, classification, etc. of the materials constituting the reddish brown and grayish white layers is scarcely done. In this study, the physico - chemical properties of gray - white and reddish brown beds are investigated. The mean grain size of the particles was less than $4{\varphi}$ in both layers and the reddish brown layer was more coarse. The results shows that the sorting of the grayish white layer is better. The chemical composition of both layers shows that the average concentration of $SiO_2$, $Al_2O_3$ and $K_2O$ of the grayish white layer was higher than those of the reddish brown layer. The concentration of $Fe_2O_3$ of reddish brown lyaer was 3 times higher than those of the grayish white layer. The degree of chemical weathering (CIA) is 90 or so in both the reddish brown and grayish white layers, indicating a significant level of chemical weathering. In conclusion, reddish brown layers had been formed by the processes related to the migration of iron and the migration of water that induced aggregation after the formation of sediments (psudo-gleization). In this study area, a vertical layer of grayish white which cuts off horizontal reddish brown and grayish white color was found. The vertical layer or wedge similar to a ice-wedge or columnar structure that in a cold environment, and there is a difference in shape and size. The vertical layer appears to have occurred three or more cycles. The vertical layers begin to form at a certain height within the outcrop and descend downwards, which of course is difficult to see as directing certain times.

실란 변성아크릴수지의 합성과 고내후성 실리콘/아크릴수지 도료의 도막물성 (Synthesis of Modified Silane Acrylic Resins and Their Physical Properties as Weather-Resistant Coatings)

  • 박홍수;홍석영;김송형;유규열;안성환;함현식;김성길
    • 한국응용과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.10-22
    • /
    • 2007
  • To prepare weather-resistant silicone/acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by a radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The compositions of monomers were adjusted to fix the glass transition temperature of acrylic polymer for $20^{\circ}C$. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects for weatherability were examined. The presence of MPTS in silicone/acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the silicone/acrylic resins containing 30 wt% of MPTS had weather-resistant properties.

Slag를 위주로 한 Glass-Ceramics 의 물리적 성질에 관한 연구 (A Study on the Physical Properties of Slag-based Glass-Ceramics)

  • 장승현;정형진
    • 한국세라믹학회지
    • /
    • 제17권1호
    • /
    • pp.27-34
    • /
    • 1980
  • The synthesis of glass-ceramic materials from glasses based on industrial wastes or natural rocks their physical properties were studied. Glasses of composition, CaO14.7∼16.1, MgO7.4∼9.0, Al2O38.3∼19.3, SiO2 48.9∼51.0wt% were prepared from domestic blast furnace slag, serpentine, sea sand and etc. with additions of chromic oxide, and fluoride as nucleating agent. The glasses were subjected to controlled heat treatments and yielded fine microstructure of glass-ceramics which were composed of monocrystalline phase of aluminous diopside. X-ray diffraction techniques were adopted to identify the crystalline phases and to determine the degree of crystallization quantitatively. Density, coefficient of thermal expansion, young's modulus, microhardness and modulus of rupture were measured and the resulting properties were discussed in terms of the heat-treatment conditions, the degree of crystallization, species of crystaline phase, the microstructures formed in glass-cramics and the chemical compositions of mother glasses.

  • PDF

Characterization of Clay Minerals in Ranch Pasture

  • Kang, Sangjae;Jang, Jeonghun;Park, Nayun;Park, Junhong;Choi, Seyeong;Park, Man;Lee, Changhee;Lee, Donghoon;Zhang, Yongseon
    • 한국토양비료학회지
    • /
    • 제49권1호
    • /
    • pp.53-59
    • /
    • 2016
  • This study deals with the distribution of the clay minerals separated from clay fractions of ranch pastures in Korea and their chemical and mineralogical properties. Crystalline phases of the clay minerals were identified by powder X-ray diffraction (XRD) pattern and FT-IR spectra, and their relative chemical compositions were also analyzed by X-ray flourescence spectrometry (XRF). Primary minerals consisted mainly of quartz and mica and chlorite and kaolinite along with a trace of swelling micas were identified as secondary clay minerals. However, the relative content of these clay minerals was different with the locations, which led to significant effects on physical and chemical properties of soils like inorganic elemental composition. In particular, $SiO_2$ content was higher in Gochang ranch pasture than in other ranch pasture. Infrared (IR) spectra did not indicate any significant differences in organic functional groups among the locations. This study clearly showed that ranch pastures had different relative content of clay minerals and chemical properties depending on the location and consequently that those properties are worthy to be taken into account for soil amendment.

Surface and Mechanical Interfacial Properties of Oxyfluorinated Carbon Fibers-reinforced Composites

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Young-Seak
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.69-73
    • /
    • 2003
  • In this work, the effect of a direct oxyfluorination on surface and mechanical interfacial properties of PAN-based carbon fibers is investigated. The changes of surface functional groups and chemical composition of the oxyfluorinated carbon fibers are determined by FT-IR and XPS measurements, respectively. ILSS of the composites is also studied in terms of oxyfluorination conditions. As a result, FT-IR exhibits that the carboxyl/ester groups (C=O) at 1632 $cm^{-1} and hydroxyl group (O-H) at 3450 $cm^{-1} are observed in the oxyfluorinated carbon fibers. Especially, the oxyfluorinated carbon fibers have a higher O-H peak intensity than that of the fluorinated ones. XPS result also shows that the surface functional groups, including C-O, C=O, HO-C=O, and C-$F_x$ after oxyfluorination are formed on the carbon fiber surfaces, which are more efficient and reactive to undergo an interfacial reaction to matrix materials. Moreover, the formation of C-$F_x$ physical bonding of the carbon fibers with fluorine increases the surface polarity of the fibers, resulting in increasing ILSS of the composites. This is probably due to the improvement of interfacial adhesion between fibers and matrix resins.

  • PDF

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • 제25권4호
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.

Interdiffusion at Interfaces of Polymers with Dissimilar Physical Properties

  • 정재명;박형석
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권7호
    • /
    • pp.720-729
    • /
    • 1997
  • The interface between two different polymers is characterized theoretically by using a model. This model is based on the assumption that the monomeric friction coefficients of the two polymers are identical but a strong function of the matrix composition. This model predicts that the concentration profiles are highly asymmetric with substantial swelling of the slower-diffusing component by the faster component. To predict the behavior of interdiffusion, three quantities are used: distance of interface Z*(t) due to the swelling, interfacial width W(t) which is most sensitive to the detailed composition profiling, and mass transport M(t) due to interdiffusion. It is found that the more dissimilar polymer pairs, the faster the movement of the interface, the quicker its interfacial width saturates to a limiting value and the slower its mass transport. These results are in qualitative agreement with some experiments.