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The interface between two different polymers is characterized theoretically by using a model. This model is 
based on the assumption that the monomeric friction coefficients of the two polymers are identical but a strong 
function of the matrix composition. This model predicts that the concentration profiles are highly asymmetric 
with substantial swelling of the slower-diffusing component by the faster component. To predict the behavior 
of interdiffusion, three quantities are used: distance of interface Z*(£) due to the swelling, interfacial width W(t) 
which is most sensitive to the detailed composition profiling, and mass transport M(f) due to interdiffusion. It 
is found that the more dissimilar polymer pairs, the faster the movement of the interface, the quicker its inter
facial width saturates to a limiting value and the slower its mass transport. These results are in qualitative 
agreement with some experiments.

Introduction

Interdiffusion of polymeric molecules is important in 
diverse areas of polymer science, ranging from 'tack' of 
rubber and crack healing in glassy polymers to the kinetics 
of phase separation in polymer blends. The study of in
terdiffusion in polymeric materials is of concern in 
numerous fields such as the encapsulation of microelectro
nics devices, rubber-toughened polymer composites, pro
cessing of polymer blends, dynamics of phase separation in 
polymer mixtures, polymer adhesion and welding of po
lymer interfaces, kinetics of adhesion, and coating. Und
erstanding the diffusion processes in polymers is the key to 
successful production of polymers and application of po
lymer products in industry. Due to i■이atively slow relaxation 
processes of polymer chains in comparison to systems of 
small molecules, polymers also offer the ideal systems for 
fundamental studies of diffusion and kinetics of spinodal 
decomposition. The examination of the interdiffusion bet
ween different species of polymers has great practical 
relevance and academic significance. However, due to the 
rich equilibrium phase behaviors found in polymeric sys
tems, ranging from miscibility and crystallization to glass 
transition, diffusion complicate this subject of interdiffusion 
to a spectacular degree.1,2 Polymer/polymer interdiffusion af
fects the mechanical properties of polymers near the in
terface. The final properties of polymers are determined by 
the thickness of the interface or by the concentration profile 
of the two polymers across the interface. The interdiffusion 
process at a p이ymer/polymer interface is a strong function 
of temperature, composition, compatibility, molecular 
weight, molecular-weight distribution, chain orientation, and 
molecular structures. In particular, differences in physical 
properties of the two polymers have marked effects on the 
shape of the concentration profile during the interdiffusion 
process. For example, Brochars-Wyart and de Gennes3,4 
showed that in asymmetric conditions polymers reptate in a 
moving tube. E. Jabbari et al.5 showed experimentally that 
polymer pairs with dissimilar physical properties can be 
highly asymmetric in the concentration profile.

In the experiments on this subject, a thin film of polymer 

species A is placed in contact with another polymer species 
B film. The evolution of the initially sharp boundary 
between A and B is monitored with respect to time by vari
ous experimental techniques. If polymers A and B are com
patible, the initial sharp interface will be smeared out as a 
result of the ordinary Fickian type diffusion. The situation 
is somewhat more delicate and interesting when polymers 
A and B are only partially miscible, i.e. when the ambient 
temperature is in the biphasic region. Klein and co-workers 
have obtained direct measurements of time-dependent com
position profiles at an interface between two partially mis
cible polymers A and B (dPS: deutrated polystyrene /PS: po
lystyrene).6,7 In particular, interfacial broadening with elaps
ing time was studied in detail. With the interfacial width W 
(t) defined as related to the reciprocal of the maximal com
position gradient across the A/B boundary, it was found 
that the thickness of the interface increases with time 
slower than that expected from a Fickian process of W(t) oc

Since the interdiffusion process is driven by ther
modynamic forces,8 as the opposite of the phase separation, 
the transport phenomena in the bilayer were expected and 
found experimentally to depend strongly on thermodynamic 
conditions such as temperature, interaction parameter bet
ween p이ymers A and B, and m이ecular weights of A and 
B. In the experiment of Steiner et 시； where interfacial re
laxation took place between polymer A-rich and polymer B- 
rich layers prepared with coexisting compositions, the ex
ponent a in a scaling law W(f) oc f was found to be con
siderably smaller than the Fickian exponent 1/2, falling 
between 0.25 and 0.5. Yet the experiment could not ex
clude the possibility that deeper in the two phase region the 
exponent a might be smaller than 0.25, since the ex
periment was not performed far away from the critical tem
perature for miscibility. The definition of maximal gradient 
adopted in studies of Steiner, U. et al.6,1 is very sensitive to 
the local structure of the interface (We will use a new 
definition of W(f), based on these studies of Steiner, U. et 
시.).

The interdiffusion process can also be described mean
ingfully by observing M(t), the amount of species A tran
sported across the initial boundary separating A and B as a 
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function of time: M(t) 化 This definition of is ex
tremely insensitive to the local structure of the composition 
profile and hence can be used to describe an interdiffusion 
process in the most unambiguous way. In addition, it per
mits the highest degree of precision in the experimental de
termination of exponent Interdiffusive behaviors of po
lymer mixtures can be characterized as following the tem
poral changes of both maximal gradient in spatial dis
tribution of composition and mass transport across the in
terface. We believe that both the interfacial width W(f) and 
mass transport M(t) are required in order to obtain a more 
sophisticated description of interdiffusion between polymer 
blends.

On the other hand, Kramer and associates9,10 showed that, 
for polymer pairs with different molecular weights, the in
terface moves towards the polymer with a lower molecular 
weight as interdiffusion proceeds. Kramer et al.n and Sil- 
lescu12 described the interdiffusion in systems with a mov
ing interface due to unequal fluxes of polymers A and B, 
which were balanced by a net flux of vacancies across the 
interface. By assuming the chemical potential of vacancies 
to be zero in the melt state but the flux of vacancies to be 
finite, they derived the following equation for the in
terdiffusion coefficient:

n从0b人丄板A 11 1 , 1丄膈
D =板如—Aa+—... + v'a '

板 弗 Na板 N/Db
(1)

Here, D is the interdiffusion coefficient; Aa and AB are the 
mobilities of polymers A and B, respectively; NA and NB are 
the number of repeat units of each polymer; and((也 are 
the mole fractions of each polymer; and x is the Flory-Hug
gins interaction parameter. In the theory, the overall mo
bility is linearly related to the mobility of each component, 
indicating that the interdifftision coefficient is dominated by 
the faster-moving component. Akcasu et al.13 observed the 
diffusion behaviors in dynamic scattering experiments with 
ternary polymer solutions. They defined the vacancies as 
the third component in a mixture of A and B polymers and 
concluded that the fast-mode was obtained in the limit of 
high vacancy concentration or a matrix with very high mo
bility. Since the polymer mobility and the vacancy con
centration are high above Tg, it is inferred that the theories 
concerned describe the interdiffusion above Tg. In fact, most 
of the interdiffusion data in the literature14 which were col
lected above the Tg of polymers are consistent with the fast
mode theory of interdiffusion, Kramer et al.n used Ruth
erford backscattering spectroscopy to follow the movement 
of a gold marker at the interface between PS and d-PS with 
different molecular weights. Reither et al.15 used X-ray re
flection spectrometry for the same purpose. They observed 
the movement of the interface toward the faster diffusion 
component. Recent results from Sauer and Walsh2 and E. 
Jabbari et al.5 have shown that, for polymer interfaces with 
dissimilar properties, the faster diffusing component swells 
the slower diffusing component at temperature near the Tg 
of the slower diffusing p이ymer. These results were ob
tained by using a polymer pair consisting of PS as the slow
er diffusing component with a 7^ of 101 °C and PVME 
(poly(vinyl methyl ether)) as the faster diffusing component 
with a 7^ of - 27 °C. The concentration profile was highly 

asymmetric. Composto and associates16 investigated in
terdiffusion in a polymer pair consisting of PS as tiie faster- 
diffusing component with a 7^ of 105 °C and PXE (poly 
(xylenyl ether)) as the slower-diffusing component with a Tg 
of 216 °C. Their results show that the concentration profile 
for this polymer pair is also asymmetric with the swelling 
of the slower-diffusing component, PS(Fig 7b). Defining the 
interface position xi9 as the depth at which(加德늬丄金 they 
showed that the interface-shift relative to the position 
of the interface at f=0, was increased linearly with f at all 
diffusion temperatures. The characteristics of which we 
will define as Z*(f), are also required for a precise des
cription of the interdiffusion between polymer blends. As 
discussed below, this non-Fickian profile must be due to the 
strong concentration dependence of the mutual diffusion 
coefficient. For interdiffusion at homopolymer interfaces or 
interfaces between polymers with similar physical properties, 
the mobilities are relatively independent of composition 
across the interfaces. However, for polymers with dissimilar 
physical properties, the composition dependence of the 
mobilities has a significant effect on the concentration pro
file. Since the matrix is homogeneous on a microscopic 
scale for many polymers, there exists a relationship between 
the polymer mobilities that relates these mobilities to the 
properties of the matrix.

Here we present a model for interdiffusion at polymer/po- 
lymer interfaces for polymers with similar and very dis
similar properties. This model is based on irreversible ther
modynamics and accounts for the composition dependence 
of the tracer diffusion coefficients of the two polymers 
which are identical but a strong function of composition. 
The composition dependence of the monomeric friction coef
ficients is calculated approximately from the many ex
perimental data for polymer blends. In addition, we con
sider the Cahn-Hilliard interfacial energy associated with 
the spatial variation of the composition at the interface dur
ing the interdiffusion of polymers.

Theory

Description of the System. For our model, a simple 
system is considered: The interdiffusion pair is schemat
ically shown in Figure 1. One phase consists of the po
lymer with low mobility (designated by s for "slow") with 
vacancies randomly distributed on the lattice. The other 
phase consists of the polymer with high mobility 
(designated by f for "fast"). It is assumed that the con
centration of vacancies is a small fraction of the total con
centration and does not contribute to the free energy of mix
ing. Since the polymers on each side of the interface have 
different molecular weights and chemical structures, there is 
a chemical potential gradient across the interface. The sys
tem is modeled by using this chemical potential gradient as 
the driving force for interdiffusion and by taking the as
sumption of quasi-equilibrium on a microscopic scale, 
which means that the polymer molecule is at equilibrium lo
cally while interdiffusion takes place.

Irreversible Thermodynamic Formulation. We 
adopt the Onsager formulation,1718 which relates the flux of 
the species across the interface to the chemical potential gra
dient of each component:
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Figure 1. Schematic diagram of the interdiffusion pair con
sisting of the polymers with low mobility (s=slow) and high mo
bility (戶fast) with vacancies (O) distributed randomly in the lat
tice.

力=詩 i,k=s,f,v (2)

Here, subscripts s, f, and v stand for slow component, fast 
component and vacancies, respectively. The symbol a 
scalar, is the molar monomeric flux of component i for one
dimensional diffusion; T is the abs시ute temperature; R is 
the gas constant; |1* is the molar monomeric chemical po
tential of component k; A(I- is the Onsager coefficient of 
component i; and A诙 is the cross-coefficient of component i 
due to the gradient of component k. In the above equations, 
the Onsager reciprocity relations18 are used to reduce the 
number of Onsager coefficients from nine to six. From one
dimensional diffusion in the Cartesian coordinate system 
with negligible excess volume of mixing and no change in 
the lattice size, the sum of the three fluxes must be equal to 
zero:

js+jf+jv=O (3)

This relationship can be used to express the vacancy On
sager coefficients in terms of the coefficient of the other 
two components:

i=s,f,v j=s,f (4)

Substituting for vacancy Onsager coefficients from Eq. (4) 
and neglecting the cross-coefficients res니ts in the following 
relation between the fluxes and the chemical potential gra
dients:

h =一一壽 N(卩i 一卩")(5) Kl

A： 
切=£~奇*皿一匹)i=s,f (6)

If the chain relaxation time has the same order of mag
nitude as the experimental time, then the chemical potential 
of vacancies is negligible. The experimental results of E. 
Jabbari et al.19 from interdiffusion of a two-physically-dif- 

ferent-polymer pair (PS/PVME) above the Tg of slower dif
fusion component PS, indicate that the diffusion process is 
independent of the molecular weight of PS on the as
sumption that the chemical potential of vacancies is negli
gible. Assuming that the vacancy concentration is nearly at 
equilibrium everywhere, the chemical potential of vacancies 
is negligible compared with the chemical potential gradient 
across the interface:

VjUv =0 (7)

then, Equation (5) reduces to the following:

h=_ 씋亍 W i=sj (8)

Chemical Potential Gradient. It is known that 
equilibrium properties of a polymer mixture of spatially un
iform composition can be approximately described by the 
Flory-Huggins type lattice theory.20 The Flory-Huggins 
equation is used to relate the chemical potential to the en
tropy and enthalpy of mixing of the two polymers. When 
the mixture phase separates, interfaces are created between 
two or more phases. At phasic boundaries, polymer chains 
rearrange their conformations and repel chains of dissimilar 
species. This leads to an increase in free energy of both en- 
tropic and enthalpic origin. Now the total free energy will 
take a generalized foim:

씨 （9）

where f0 is the free energy density of the system, and the 
second term involving (V0)2 accounts for the Cahn-Hilliard 
interfacial energy associated with the spatial variation of the 
composition. The phenomenological parameter K has the di
mension of length squared and plays an important role in 
control and formation of interfaces. It is generally a func
tion of concentration 0 and should also depend upon spec
ific properties of both polymer species as well as ambient 
temperature. In the Flory-Huggins theory for incompressible 
polymer mixtures of lengths Ns and is given by the 
familiar expression

ln(©)+[(l — ©)/M]h】(l —8)+义兀(1 — 8) (10)

with 8 being the volume fraction of polymer s. Since Ns 
and Nf are large and the entropy of mixing is very weak 
and relatively small, positive Flory x parameter is sufficient 
to make s and f phases separate into 5-rich and 产rich phases. 
The p이ymerwacancy interaction parameter is negligible. 
This is a good assumption since the concentration of va
cancies is an order of magnitude lower than the polymer 
concentration. Then,

农= 1 (11)

In general, depending on the initial conditions, polymers s 
and f may either demix through spinodal decomposition or 
interdiffuse into each other. Phase separation cannot be per
fect when the system is not far enough from the critical 
point for miscibility. By the same token, partial mixing via 
interdiffusion will occur when a layer of pure polymer s is 
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put in contact with a layer of pure f, but the diffusion is not 
free in the sense of Fickian transport, and anomalous beha
viors are anticipated. Since a complete mixing is prevented 
by thermodynamics, the interface between s and f presents a 
diffusion barrier where the composition crosses over from 
its coexistence value of one phase to that of the other. Con
sequently, the diffusion constant is negative at the middle 
of the interface where the interfacial effect stabilizes the in
terdiffusion process. In our situation, the initial arrangement 
is a sharp contact between two unmixed polymer species s 
and f. The thermodynamic driving forces, both from the 
bulk and interfacial region, compel the system to mix 
through the interfacial region.

The equilibrium theory of Helfand and others21,22 for the 
interfacial structure of polymer blends also produces a sim
ple expression for the parameter k(8) in

啲=흣 + 糸 (12)
(p 1-0

where <sf are the size of subunit. In the case of =Gf= 
a2

k(8)=——으----- (13)

where a is a monomer length.
Then, the molar monomeric chemical potential for each 

component is obtained from the functional derivative of to
tal free energy with respect to the number of moles of that 
component,

dF In +1 ln(l — ^) +1 o
"=MT = v----------― +^(1-20)g Ns Nf

——-一 VW (14)2<Xl-0) w

whereas the chemical potential gradient is obtained from the 
derivative of monomeric chemical potential with respect to 
the diffusion axis:

"僵] (15)

\ 丿

/ \
服焉+冇~%厂 5 f (16)

@sNs (1—但)N/ 2 但(1—但)

\ /
Here,為 is the interaction parameter between a monomer of 
the slower and faster moving components, and Ns and Nf 
are the number of repeat units for the slower and faster 
moving components, respectively. Equation (16) relates the 
monomeric chemical potential gradient of each component 
to temperature, molecular weight of each polymer, com
patibility parameter and composition. In arriving at Eq. (16), 
we have neglected nonlinear terms involving (V0)3 and (V0) 
V20. These terms are unimportant at late stages of in
terdiffusion when the interface has sufficiently broadened.

Since the polymers are incompressible, the net exchange 
of matter across the interface as a result of different dif
fusion coefficients of the two polymers causes swelling of 
the slower diffusing component by the faster moving com
ponent. This swelling results in the movement of the in
terface as interdiffusion progresses. The amount of swelling 

is related to the net flux of vacancies across the interface. 
Therefore, the total flux of each component is given by the 
following relations:

j：=ji 노 Qjv (17)

The total flux j； of s across a plane fixed with respect to 
the coordinate system is the sum of the diffusion flux of s 
and the s transported by the vacancy flux, then:

Ji =—[(1 — ^s) As VjUs — (18)

here, j； and)}, scalar quantities, are the total molar monom
eric flux of the slower- and faster-diffusing components, 
respectively.

The Onsager Coefficients. One topic in studies of 
interdiffusion is to derive the functional form of A((|)) at a 
phenomenological level by setting the off-diagonal Onsager 
coefficients to zero."꺼" Recently some Monte Carlo simu
lations also have been carried out.25 But, there has not been 
any attempt to formulate the transport coefficient A(8) at 
molecular-level. De Gennes3 has shown that the Onsager 
coefficients for interdiffusion of polymer i due to a gradient 
of its own chemical potential, A” are given by the following 
equation:

4 =3*5 S 0(1 (19)
fi Q Nj

Here, is the monomeric friction coefficient of component 
i as if it is a Rouse chain; Nf is the number of repeat units 
between entanglements for component 1; Q is the molar frac
tion of polymer i; and Q is the volume of a quasi-lattice 
site assumed to be the same for both molecules, respec
tively. Roland and Ngai26 measured the segmental re
laxation in a two-physically different polymer blend, PS/ 
PVME, using dielectric spectroscopy. According to their 
results there was a significant coupling and intersegmental 
cooperativity in the relaxation spectrum of this blend. This 
clearly indicates that the mobility of a chain in the polymer 
blend matrix is strongly influenced by the other component 
and suggests that the friction coefficients, and 抨 should 
be identical but a strong function of the matrix composition. 
Therefore, for compatible polymer pairs, Eq. (19) reduces to 
the following:

= *打 。(1 - 电) (2。)

Here, f1 is the molar monomeric friction coefficient for the 
blend, which is strongly composition-dependent for a po
lymer pair with dissimilar physical properties. The paramet
er Ne is the average number of repeat units between en
tanglements for the blend. In a E. jabbari et 이:s paper,27 
they have suggested a model for interdiffusion at interfaces 
of polymers with dissimilar physical properties, such as PS/ 
PVME. In that, they evaluated the composition dependence 
of the monomeric friction coefficient from the blend zero 
shear viscosity using the reptation theory. They predict that 
the concentration profiles are highly asymmetric, with sub
stantial swelling of the slower diffusing component by the 
faster diffusing component.

The model presented in our study is based on the as
sumption that the tracer diffusion coefficient of the two po
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lymers is strongly coupled to the properties of the matrix. 
Thus, the chain diffusion coefficient is related to the chain 
molecular weight, the mesh size of the entangled chains and 
the composition of the matrix, and is relatively independent 
of the monomer structure of the diffusing chain. For sim
plicity, we will take some reasonable approximations based 
on the empirical results.

Flux of Each Component. Substituting the fluxes 
from Eq. (2) and the chemical potential gradients from Eq.
(16) and the Onsager coefficients from Eq. (20) into Eq.
(17) results in a relation between the total flux of the 
slower-diffusing component and the molecular parameters 
of each polymer:

(21)

It is possible to describe this transport process by simply ap
plying the law of mass conservation. According to the con
servation law, the temporal change of composition in space 
can be described by the dynamic equation. For the bilayer 
arrangement in Figure 1, the analytical description reduces 
to a one-dimensional space denoted by the z-axis. For con
servation of s-segmental, molar balance for each component 
results in the following equation relating the rate of flux as 
a function of distance to the rate of change of concentration 
as a function of time:

쓰 = 一呼 (22)

where Q is the volume of quasi-lattice site. The time and 
spatial dependence of the mole fraction of the slow com
ponent can be obtained by substituting the total flux from 
Eq. (21) into Eq. (22):

湖_ 3
dz

X 竺单~ + 令一2奶읏 V縮 (23)
Ns Nf 2

The above equation relates the time and spatial dependence 
on the slower disusing component to molecular properties 
such as molecular weight, compatibility parameter, tem
perature and the blend friction coefficient. The first term of 
Eq. (23) accounts for the mobility of the polymer chains via 
the monomeric friction coefficient f朴,the second term ac
counts for the differences in molecular weights of the two 
polymers, and the factor in the front of the third term ac
counts for the free energy of mixing. The other major diff
erence from an ordinary Fickian diffusion equation is that 
the third term can turn negative, amounting to a negative 
diffusion constant and therefore "uphill diffusion'1. The forth 
term involving d3d/3z3 accounts for the presence of an in

terface separating two incompatible phases. If the two po
lymers have similar physical properties but different molec
ular weights, then the second term is the dominant term, as 
in the case of the fast-mode theory.11,12 However, if the two 
polymers have widely different physical properties, then the 
first term dominates.

Now, consider the calculation of the molar monomeric 
friction coefficient, f*. From many experimental data, we 
can find that the composition dependence of the monomeric 
friction coefficient for the polymer pair is nearly linear in 
logarithmic scale (Figure 2). Green et al.23 measured the 
tracer diffusing coefficient of PS in PS/PVME matrices of 
different composition with forward recoil spectrometry and 
they evaluated the matrix composition using the reptation 
theory. In Figure 2, this variation of the monomeric friction 
coefficients with composition is shown. The blend monom
eric friction coefficient has changed by six orders of mag
nitude through the composition variation from pure PS (the 
volume fraction of the slower diffusing component PS, @==1) 
to pure PVME (0^=0). As PVME is added to a PS matrix, 
the friction coefficient decreases dramatically owing to the 
high mobility and the low Tg of PVME and the friction coef
ficient becomes dominated by the physical properties of 
PVME. This indicates that PVME plasticizes the PS matrix 
as interdiffusion takes place across the interface. Therefore, 
for polymers with dissimilar physical properties, interdif
fusion is accompanied by the swelling of the slower diffus
ing component. In Figure 2, the dotted line is our ap
proximate line representing the linear relation between log
arithmic scale of monomeric friction coefficient, J허 and 
volume fraction of each component. So, f1 can be expressed 
by:

-log f1 =G(l~(ps)+const
f허 = exp[- G (1 - 但 ) 一 const]

«：exp(G 们) (24) 
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Figure 2. Experimental (open circles) monomeric friction for 
the PS/PVME pair at 120 °C. These data points were extracted 
from Green et al.36 with PS and PVME average Mw of 1.05 x 105 
and 9.9 x 104 and polydispersity indices of 1.06 and 2.10, respec
tively. The dotted line is our approximate line representing the 
linear relation between logarithmic scale of monomeric firiction 
coefficient and volume fraction of each component.
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where G is the slope of the dotted line in Figure 2 and is 
the value related to the degree of difference in the monom
eric friction coefficient of each polymer component. A great
er value of G means that the polymer pairs will be more dis
similar in component. On the other hand, the number of re
peat units between the entanglements for the blend can be 
estimated from the relationship between the entanglement 
molecular weight and the plateau modulus.29

In general, the entanglement molecular weight of mo마 po
lymers has the same order of magnitude. So, we can as
sume by approximation that N" is independent of com
position. Then, we can obtain the following equation:

쪼으.Dxexp&g) 으悖丄喘

\ 丿

(26)%-号 VW

where D is a constant including NL We define R=r-1 using 
the polymerization ratio r^NJNf, the interfacial parameter K 
to have the magnitude of the square of the radius of gyra
tion: K=Nsa2; and we have also made a change of notation: 
N=N* We scale length by the natural length K172 in the 
problem and make the conversion z—忆/砂2. We scale time 
with the unit x=2K which is on the order of the rep- 
tation time of a single chain in a melt, and make the 
transformation It代.Rewriting the resulting Eq. (26) in 
terms of the rescaled variables, we find:

萼=暮何"-外)(1+尺妇

x [(2+(2R -4N)农 +4N8?) - V3幻｝ (27)

Boundary Conditions. As long as the mass transport 
has not approached the outer two boundaries of the thin 
film, the interdiffusion process can still be described by Eq. 
(27). The initial and boundary conditions to solve the above 
diffusion equation are:

t=Q 农=0
z=0 8s = 1 for 8f<z<&+8f (28a)

z =0 A 些=0
3” for/>0

z = & + 馬 幽=0 
由

(28b)

where we set the film length &=5尸0.5 in order to nor
malize the full film length. The boundary conditions of the 
Eq. (28b) represent no-flux boundary conditions. In Eq. 
(28a), we take @=0 and q사=1, which is a step function as 
corresponding to phases which are 100% /-rich and 5-rich at 
t=G, respectively. This situation in the condition is described 
in Figure 1. For the polymer pair with dissimilar properties 

the differential equation becomes stiff and the second initial 
condition of Eq. (28a), is a measure of the stiffness for the 
differential equation.

Numerical Method

It is not feasible to seek the analytical solution of the non
linear partial differential equation of Eq. (27). But num
erical solutions can be obtained by discretizing Eq. (27) 
with finite differences. Consider the situation namely, a bi
layer of initially pure polymer s and polymer f. Regarded as 
a one-dimensional problem, the left-hand side is occupied 
by f and the right-hand side by s initially. The evolution of 
the bilayer system starting from the initial profile of a step 
function is described by the application of the standard 
Crank-Nicholson method to update at every time step the 
profile described by Eq. (27). In discretizing 淅(키)仞 term 
as ((們/*)/△£, as (牝m)/2z\z, and similarly for
its higher spatial derivatives, M is chosen as A/=10 8 and a 
grid point Az as Az=10 5. We transform many nonlinear 
terms, such as V2^, V3^, V缽,and their products, into 
linear terms using the Newton method. Our differential 
equation is solved with a variable-step-size finite-difference 
method. We allow the system to evolve 50000 time steps as 
far as the boundary condition will remain valid.

Result and Discussion

As discussed in the Introduction, we consider three quan
tities, one reflecting the local structure at the middle of the 
interface and others depicting the overall profile of the com
position field, in order to provide a reliable description of 
the interdiffusion process. Now we define the interfacial 
width W(t) for our model, in the form similar to the de
finition of ref 6; namely, we define new W。)in terms of 
the maximal gradient of composition. For a case such as the 
present study, W(t) is simply given by

- _2 _2~| V2
W0)= (허轮*")[ [3(z=100厶z,r=o) (29)

where z* is the value of z at 8=0.5, and z=100Az' is the in
itial interface position since we take 200 grid points in the 
interface-around area. is given on unit of KV2. Because 
of the suppressed diffusion due to the "spinodal barrier", it 
is expected that the exponent a in the power law W(t) oc 严, 

does not exceed 0.5. Moreover, the value of a does not 
have to stay between 0.25 and 0.5 since the existence of an 
optimal stationary interfacial width is plausi미e in a steady
state of interdiffusion.

Another characteristic property is the mass transport M(t) 
of polymer f transported from the left-hand side of the in
terface to the right. M(t) is calculated according to

M(t)=ex J 2004ztfc ©f(z, t) (30)

where £ is a constant and in according to Eq. (11). 
Since we are concerned with the nanow area around the in
itial interface, only 100 grid points (100 Zkz's) from each 
side (from the slower and faster sides) around the initial in
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terface are considered. At z=0, the range of grid points from 
100th Az to 200th Az is occupied only by the slower diffus
ing component. It is expected that M(f) will increase with 
time slower than til2 for the dissimilar couples of polymer 
blends.

And the last property of the interdiffusion process ex
amined in the study is the distance of interface Z*(f), from 
the initial interface position at r=0. It is expected that Z*(f) 
also will increase with time slower than r1/2 for the case of 
partially miscible couples of polymer blends. That is, the 
diffusion is not free, with the system inside the two-phase 
region.

It is necessary to consider 么，which is the value of the 
Flory interaction parameter % at the critical temperature Tc. 
In the Flory-Huggins mean-field model of polymer mixing, 
乙 can be expressed by

& =(屈+丽;y/2NsNf (31)

for the case N戸N、, i.e., R=r-l=0 and Nc=M%扌=2, and for 
the case 2Nf=Ns, i.e., for R=l, Nc=2.914. One expects to ob
serve the interface broadening and eventual relaxing to its e- 
quilibrium dimension, as experimentally found in ref 7. In 
fact, at a given temperature, i.e., for a given %, the two 
phases will coexist in equilibrium with compositions det
ermined by two roots of the following equation:

In+NQF)-R =0 (32)

which corresponds to the state |i=0, where 卩 is obtained 
from the energy of the Flory-Huggins lattice theory. In our 
model N=2 for R=0 and N=3 for R=1 are used to have the 
situation near the critical point.

By this numerical analysis, we can obtain the following 
results. First, the concentration profile can be obtained. In
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Figure 3. The concentration profiles of the interfaces-around 
area for G=0, N그2, R=0, at consecutive times. We denote the 
coordinate perpendicular to the films as z. The initial condition 
consists of the pure /-film separated from the pure s-film by a 
sharp interface at z=0.5 This range of z is very narrow compared 
to the widths of thin films of both polymers (0.001% of the en
tire width).

Figure 3, the simulated concentration profile for R=0 
(polymerization ratio is 1, N가"), N=2, and G=0, at con
secutive times after onset of the interdiffusion is shown. 
The step function is the initial condition which describes 
the contacted polymer pairs. The time is expressed in scaled 
units of 2K (N^f/D and the length in scaled units of K'". 
The p이ymers begin to diffusing into each other side. Since 
it is the case of very similar polymer pairs, the time evo
lution of the concentration profile is almost the Fickian type, 
that is, the transport phenomenon appears almost the Fick
ian. In fact, the full range of z in the above figure is very 
narrow compared to the width of the thin films of both po
lymer (that is, 0.001% of the entire width, &노粉 since the 
full range of the system is normalized to 1). In this figure, 
the Fickian characteristics are shown as anticipated. To 
quantify our analysis, we calculate the interfacial width W(f) 
as a function of time. In Figure 4, this characteristics are 
described by means of the time evolution of interdiffusion 
width since the process can be inspected more clearly 
by searching for a scaling law oc f-. And we can find 
the linear relation in the plots of log[W(t)] versus log(z). 
The best expression of the power-relation is Z0461, and the 
exponent a (the slope in the plots) is found to be 0.461<0.5, 
which is smaller than the Fickian characteristic value of ex
ponent a, as expected. Next, we calculate the time de
pendent of M(t). In Figure 5, the linear logarithmic scaled 
relation with the time evolution of M(f) is shown, which is 
very similar to in form and the exponent。(the slope 
of the plots) is 0.4588 according to the scaling law M(f) oc

It also resembles the Fickian characteristics. Since the 
curves are not straight lines throughout all the time interval 
in either Figure 4 or Figure 5, power laws such as W(t) oc 
f1 and M(t) oc h이d o이y for a certain period during the in
terdiffusion. In this case, the behaviors associated with the 
interfacial dynamics are relatively similar to those related to 
mass transport, namely, both quantities, W(t) and 
which describe the Fickian-like behavior of interdiffusion 
for similar polymer pairs.

Now consider the other case, that is, the interdiffusion of

log(t)
Figure 4. The time dependence of interfacial width, W(i) for G- 
0, R그0, N=2 plotted in the double-logarithmic form, that is, the 
plot of log[W(z)] versus log(z). The slope a is 0.461. This beha
vior is almost Fickian characteristics.
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Figure 5. The time dependence of mass transport M(t), for (7=0, 
R드0, N=2 plotted in the double-logarithmic form, that is, the pl아 

of log[Af(0] versus log(r). The slope is 0.4588. This behavior 
is very similar to W(f) of Figure 4.

hng front. It is in good agreement with studies by E. Jab- 
bari et al.21 which indicate that the interface moves as a 
sharp front into a slower component layer. Time de
pendence of the concentration profiles for G=1 is shown in 
Figure 7a. The time evolution of this simulated profile is 
for /=50t, 150t, 25Or and 350t. This figure 아lows that the 
concentration profile remains asymmetric as the interdif
fusion proceeds and that the interface moves like a swelling
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polymers with dissimilar physical properties. Comparing 
this case with the above similar polymer pair case, we find 
the differences in behavior of the diffusion processes for 
each property discussed. In Figure 6, the asymmetry of the 
simulated concentration profile for G-2 predicted by the 
model is shown. The non-zero value of G signifies that the 
polymer pairs have different monomeric friction coefficients 
for each component. This difference is due to the diff
erences in glass temperature Tg, chain length, mobility, etc. 
According to this figure, the concentration profile for the 
Fickian model with the constant diffusion coefficient, for 
we put R듀。and G끄0, is symmetric whereas the profile for 
R=1 and G=2 is asymmetric, with the original interface 
moving into the slower diffusing polymer layer as a swel-

Figure 6. Comparison of the concentration profile for G드2, R드 1, 
N=3 with that for G=0, R=0, N=2 at f=100r. The dotted curve is 
the original interface. Different diffusion behavior for each case 
is described.

트
N
l

二를

Figure 7. (A) The concentration profiles for (7=1, R=l, N=3 at 
consecutive times (Z=50t, 150t, 250t, 350t). The dotted curve is 
the original interface and the interfacial movement is shown by 
remarking z*. These behaviors are in good agreement with many 
experimental results (Figure 7B). (B) Composto et 시.'s ex
perimental volume fraction profile of PXE in the PS/PXE dif
fusion couple. The couples are heated to 184 °C for (a) 1.0 h, (b) 
4.0 h and (c) 16.0 h. The interface position z* at which ^^=0.5 
is represented (here, expressed by xi).
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log (f)
Figure 8. Comparison of the time dependence of the distance of 
interface Z*(f) from the initial position, for G=2, R=2, N=3 with 
that for G=l, R=2, N=3 at consecutive times, plotted in the dou
ble-logarithmic form, that is, the plot of log[Z*(?)] versus log(0.

Figure 9. Comparison of the time dependence of the interfacial 
width W(t) for G듀2, R=l, N=3 with that for G=l, R그 1, N=3 가 

consecutive times, plotted in the double-logarithmic form, that is, 
the plot of log卩W)] versus log(Z). The slope a is 0.2404, 0.2489 
for G-2, G=l, respectively.

front into the slower component layer. The arrows represent 
the position of interface defined above as z* and the move
ment of the interface can be shown. In this case, we set R=
1, which means Ns=2Nf and N=3, in order to obtain a si
tuation near the critical point, instead of one far from the 
critical point. In accordance with many experimental results, 
e.g., PS/PXE pair interdiffusion experiment of R. J. Com- 
posto and E. J. Kramer (Figure 7b), the interface moved as 
a sharp front into the slower component side (in the ex
periment of Figure 7b, PXE is the slower component than 
PS). This movement is due to the swelling of the slower 
component by the faster component. In the comparison of 
the two figures (Figure 7a and 7b), the good agreement 
between the simulated concentration profile and the ex
perimental data can be found. So by using this model the 
behavior of interdiffusion in this kind of polymer pairs can 
be described. In Figure 8, the time evolution of the distance 
of interface for each case can be shown using the plot of 
log[Z*(r)] versus log(z) for each case. The interface shift, Z* 
(0, relative to the position of the interface at t=0 is cal
culated by using the definition of interface position; z* is 
the position at 05=O.5 as in the Eq. (29). As anticipated, the 
movement of interface for G=2 is faster than the other. In 
the comparison of the interface movements for G=1 and G=
2, the interface of G=2 moves farther from the initial front 
than that of G=1 for the same time step. Since the case of 
G=2 is the interdiffusion of a dissimilar polymer pair with 
more different monomeric friction coefficients between each 
component than those of the G-l case, we can predict that 
a bigger discrepancy in physical property between each po
lymer, especially in the monomeric firiction coefficient, 
means a faster interface movement, that is, a faster swelling. 
The time dependence of the interfacial width W。)，is shown 
in Figure 9 with the plot of the log[lV(0] versus log(z) for 
each case. The interfacial width of (7=2 from the initial 
sharp front increases by greater amount than that of G=l. In 
Figure 10, the plot of the log[Af(r)] versus log(Z) for each 
case is shown. For the time evolution of M(t), the similar

Figure 10. Comparison of the time dependence of the mass 
transport, for G=2, R=l, N=3 with th가 for G=l, R=l, N=3 
at consecutive times, plotted in the double-logarithmic form, that 
is, the plot of log[M(/)] versus log(Z). The slope a is 0.2952, 
0.3653 for G드2, G=l, respectively.

behavior can be found, that is, the mass transport M(t) of G 
=2 increases' faster than that of G-l.

Here, two interesting behaviors can be found. The first 
behavior of interest is that the magnitudes of the exponents 
a and p decrease as the G value increases. The values of a 
are 0.2638, 0.2404 and the values of § are 0.3653, 0.3133, 
for G=l, G=2, respectively. Comparing these results with 
the value of a and。for the similar polymer case of R=0 
and G=0 (a=0.461 and 6=0.4588), this tendency is clear. 
Even though the interfacial width W(t) and the mass tran
sport across the interface M(f) are enlarged in proportion to 
the difference of physical properties between polymer com
ponents, the components are saturated quicker to a stable in
terface of finite width, that is to say, if the value of G be
comes greater, then more non-Fickian characteristics can be 
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found. It is the suppressed diffusion due to the spinodal bar
rier, so diffusion is not free with the system in the two- 
phase region or more restriction for penetration. The second 
interest-holding result is 出e smaller value of a than 0.25, 
that is 0.2489, 0.2404, for G=l, G=2, respectively. From a 
simple dimensional analysis, one tends to conclude that the 
exponent a has to fall between 1/4 (the Cahn-Hilliard term 
dominant30) and 1/2 (the Fickian characteristic). But com
petition and balance between interfacial and thermodynamic 
forces may lead to a much smaller a than the "lower bound" 
0.25. From Klein's data for interdiffusion between two par
tially miscible polymers (PS/d-PS), the exponent a is evalu
ated to be 0.21. And the studies of S. Q. Wang et al 
represented the range of 0.10-0.23 for a when 0 falls in the 
range of 037-0.41.31 Evidently, both experiment and theory 
allowed a to be smaller than 0.25, at least for the definition 
of interfacial width specified by Eq. (29). The fact that a is 
smaller than 0.25 means that the exponent a alone cannot 
well characterize the entire transport process even when the 
system is near the critical point for complete mixing. It at 
best depicts how sharply the composition field varies across 
the interface. This indicates that the "uphill*' diffusion 
represented by the third term on the right hand side of Eq. 
(27) is well balanced by the Cahn-Hilliard interfacial effect 
described by the fourth term in Eq. (27). This explains why 
the exponent has become so small, even falling below 0.25.

Conclusion

We have studied the phenomena of interdiffusion at in
terfaces of dissimilar polymers from a theoretical viewpoint 
by deriving a dynamic model for collective interdiffusion 
and spinodal decomposition in polymeric materials. The 
model was applied to the polymer pairs with similar pro
perties and to polymer pairs with very dissimilar physical 
properties to predict the concentration profile at the in
terfaces. Since the friction coefficients are highly com
position dependent, the concentration profiles have different 
forms for the different values of G. In the case of dissimilar 
polymer pairs, the concentration profiles were asymmetric, 
with a substantial swelling of the slower-diffusing phase as 
a swelling front, and can be compared with symmetric 
cases. Using this model, the time dependent properties, W(t), 
M(t), and Z*(f) can be calculated. And the tendency of 
these properties for each G value is shown. Our predictions 
agree well with the available experimental data. Nev
ertheless, we point out that the time dependence of the in
terfacial width W(t) alone is not sufficient to fully charac
terize the transport process. We predict in our calculation 
that W(t) stop broadening after a sufficiently long time 
period and loses its function as a monitor of the in
terdiffusion process. Also, during a certain period when a 
power law such as holds, it is found that a is actually 
smaller than 0.25, in agreement with some experimental 
data. The other quantities such as the mass transport M(t) 
and the distance of interface Z*(z) replace the function of W 
(t) to provide an illustration of interdiffusive transport.

It is necessary to improve our calculation for more re
liable results. For example, we need the higher skills of 
numerical method to describe the interdiffusion phenomena 
for a long time stage.
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