• Title/Summary/Keyword: chemical binding

Search Result 1,354, Processing Time 0.024 seconds

Comparison of Protein Binding Polysaccharide from Agaricus blazei Murill Prepared by Ultrafiltration and Spray-Drying Process

  • Hong, Joo-Heon;Choi, Yong-Hee;Youn, Kwang-Sup
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Chemical properties of spray-dried powders separated based on molecular weight from crude protein binding polysaccharide (CP-SD) of Agraricus blazei were examined. Contents of ${\beta}$-glucan in SD-1, SD-2 and SD-3 were 18.67%, 48.24%, and 37.15% respectively, and SD-2 (10-150 kDa) showed the highest molecular weight. Obtained ${\beta}$-glucans were not pure glucan, but was determined to be an acidic proteo-heteroglycan with a large amount of glucose (74.46-80.05%), galactose (8.91-15.2%), and mannose (4.9-5.46%). Composition of their amino acids was mainly aspartic and glutamic acids. FT-IR spectrum revealed SD-1, SD-2 and SD-3 were structures of ${\beta}$-1,3-glucans and ${\alpha}$-1,6-glucans at 890 and 930 $cm^{-1}$, respectively, signals of ${\alpha}$-1,6-glucans for CP-SD was not found. Useful CP-SD was recovered from A. blazei for preparation of three powder types as food materials.

Binding Model of Amentoflavone to Peroxisome Proliferator-Activated Receptor γ

  • Lee, Jee-Young;Kim, Jin-Kyoung;Lee, So-Jung;Lee, Eun-Jung;Shin, So-Young;Jin, Qinglong;Yoon, Do-Young;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1475-1479
    • /
    • 2012
  • Human peroxisome proliferator-activated receptor gamma ($hPPAR{\gamma}$) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. In this study, we verified that amentoflavone is an agonist of $hPPAR{\gamma}$ and probed the molecular basis of its action. It was demonstrated that amentoflavone bound $hPPAR{\gamma}$ with high (picomolar) affinity and increased the binding between $hPPAR{\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 4-fold. Based on a docking study, for the first time, we propose a model of amentoflavone and $hPPAR{\gamma}$ binding in which amentoflavone forms three hydrogen bonds with the side chains of His323, Tyr327, and Arg280 in $hPPAR{\gamma}$ and participates in two hydrophobic interactions.

Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1

  • Yun, Ji-Hye;Lee, Chul-Jin;Jung, Jin-Won;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.583-588
    • /
    • 2012
  • Functional interaction between Drosophila orphan receptor FTZ-F1 (NR5A3) and a segmentation gene product fushi tarazu (FTZ) is crucial for regulating genes related to define the identities of alternate segmental regions in the Drosophila embryo. FTZ binding to the ligand-binding domain (LBD) of FTZ-F1 is of essence in activating its transcription process. We determined solution structures of the cofactor peptide ($FTZ^{PEP}$) derived from FTZ by NMR spectroscopy. The cofactor peptide showed a nascent helical conformation in aqueous solution, however, the helicity was increased in the presence of TFE. Furthermore, $FTZ^{PEP}$ formed ${\alpha}$-helical conformation upon FTZ-F1 binding, which provides a receptor bound structure of $FTZ^{PEP}$. The solution structure of $FTZ^{PEP}$ in the presence of FTZ-F1 displays a long stretch of the ${\alpha}$-helix with a bend in the middle of helix.

Synthesis and Anion Binding Affinities of Novel Molecular Tweezers Based on Chenodeoxycholic Acid Bearing Different Lengths of Arm

  • Kim, Ki-Soo;Jang, Hyun-Seok;Kim, Hong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1445-1449
    • /
    • 2006
  • Molecular tweezers based on chenodeoxycholic acid bearing different lengths of arm were synthesized andtheir anion binding affinities were evaluated by $^1H$ NMR, isothermal calorimetric titration, and ESI mass spectrometry. Molecular tweezer 6 showed a high selectivity toward $H_2PO_4\;^-$ over $Cl^-,\;Br^-,\;I^-, $ and $CH_3CO_2\;^-$ by $^1H$ NMR titration, whereas the association constant for $F^-$ revealed the largest value as determined by ITC. The selectivity of 6 towards $F^-$ was about 103 times higher than that of $Cl^-,\;H_2PO_4\;^- $, and $CH_3CO_2\;^-$. ITCexperiment of 6 with $F^-$ in a DMSO showed two binding modes; two sequential association constants $K_1\;=\;2.77\;{\times}\;10^5\;M^{-1}$ and $K_2\;=\;8.68\;{\times}\;10^6\;M^{-1}$ were found. These sequential bindings were confirmed by ESI massspectrometry. 1 : 1 and 1 : 2 complexes of 6 and $F^-$ were found at m/z 868.08 and 884.04.

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach

  • Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3051-3056
    • /
    • 2011
  • We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.

High-Contrast Imaging of Biomolecular Interactions Using Liquid Crystals Supported on Roller Printed Protein Surfaces

  • Park, Min-Kyung;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3269-3273
    • /
    • 2012
  • In this study, we report a new method for the high contrast imaging of biomolecular interactions at roller printed protein surfaces using thermotropic liquid crystals (LCs). Avidin was roller printed and covalently immobilized onto the obliquely deposited gold surface that was decorated with carboxylic acid-terminated self-assembled monolayers (SAMs). The optical response of LCs on the roller printed film of avidin contrasted sharply with that on the obliquely deposited gold surface. The binding of biotin-peroxidase to the roller printed avidin was then investigated on the obliquely deposited gold substrate. LCs exhibited a non-uniform and random orientation on the roller printed area decorated with the complex of avidin and biotin-peroxidase, while LCs displayed a uniform and planar orientation on the area without roller printed proteins. The orientational transition of LCs from uniform to non-uniform state was triggered by the erasion of nanometer-scale topographies on the roller printed surface after the binding of biotin-peroxidase to the surface-immobilized avidin. The specific binding events of protein-receptor interactions were also confirmed by atomic force microscopy and ellipsometry. These results demonstrate that the roller printing of proteins on obliquely deposited gold substrates could provide a high contrast signal for imaging biomolecular interactions using LC-based sensors.

Synthesis and Fluoride Binding Properties of Tris-pyridinium Borane

  • Lee, Kang Mun;Kim, Yejin;Do, Youngkyu;Lee, Junseong;Lee, Min Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1990-1994
    • /
    • 2013
  • A novel multi-cationic borane, tri-N-methylpyridinium substituted triarylborane, $[BAr^N_3]I_3$ ($[2]I_3$) ($Ar^N=4-(4-C_5H_4N-Me)-2,6-Me_2-C_6H_2$) was prepared from the corresponding neutral tris-pyridyl borane, $BAr_3$ (2a) ($Ar=4-(4-C_5H_4N)-2,6-Me_2-C_6H_2$). The crystal structure of 2a determined by X-ray diffraction study reveals the presence of tri-coordinate boron center with peripheral pyridyl moieties. The fluoride ion affinity of the cationic borane, $[2]I_3$ was investigated by UV-vis absorption titrations and was compared with that of neutral 2a. While 2a binds fluoride with the binding constant of $1.9{\times}10^2\;M^{-1}$ in $THF/H_2O$ (9:1 v/v) mixture, $[2]I_3$ shows a very high binding constant ($K=1.0{\times}10^8\;M^{-1}$) that is greater by six orders of magnitude than that of 2a in the same medium. This result indicates that the fluorophilicity of triarylborane can be drastically enhanced by multiple pyridinium substitutions.

Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi

  • Kang, Kyoung-Suk;Kim, So-Young;Lee, Jung-Hwan;Nam, Ki-Seok;Lee, Eui Ho;Lee, Chan Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1673-1678
    • /
    • 2013
  • Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. To figure out the binding modes and the structure of the N-terminal domain of lumazine protein, the wild type of protein extending to amino acid 118 (N-LumP 118 Wt) and mutants of N-LumP 118 V41W, S48W, T50W, D64W, and A66W from Photobacterium leiognathi were purified. The biochemical properties of the wild type and mutants of N-LumP 118 proteins were analyzed by absorbance and fluorescence spectroscope. The peak of absorbance and fluorescence of lumazine ligand were shifted to longer wavelength on binding to N-LumPs. The observed absorbance value at 410 nm of lumazine bound to N-LumP 118 proteins indicate that one mole of N-LumP 118 proteins bind to one mole of ligand of lumazine. Fluorescence analysis show that the maximum peak of fluorescence of N-LumP S48W was shifted to the longest wavelength by binding with 6,7-dimethyl 8-ribityllumazine and was shown to the greatest quench effect by acrylamide among all tryptophan mutants.

Interaction of ct-DNA with 2,4-Dihydroxy Salophen

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh;Mirkhani, Valiollah
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1973-1977
    • /
    • 2009
  • In the present study, at first, 2,4-Dihydroxy Salophen (2,4-DHS), has been synthesized by combination of 1, 2-diaminobenzene and 2,4-dihydroxybenzaldehyde in a solvent system. This ligand containing meta-quinone functional groups were characterized using UV-Vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and 2,4-DHS, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of 2,4-DHS with ct-DNA was found to be (1.1 ${\pm}\;0.2)\;{\times}\;10^4\;M^{-1}.$ The fluorescence study represents the quenching effect of 2,4-DHS on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of 2,4-DHS concentration. Thermal denaturation experiments represent the increasing of melting temperature of DNA (about 3.5 ${^{\circ}C}$) due to binding of 2,4-DHS. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.