• Title/Summary/Keyword: chemical binding

Search Result 1,354, Processing Time 0.026 seconds

Acid-Base Equilibria and Related Properites of Chitosan

  • Joon-Woo Park;Kyung-Hee Choi;Kwang-hee Koh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.68-72
    • /
    • 1983
  • The $pK_{a}$ of $-NH_{3}^{+}$ group of chitosan in water was 6.2, while that of D-glucosamine-HCl, monomer of chitosan, was found to be 7.8. The difference of $pK_{a}$ values between chitosan and D-glucosamine was attributed to the strong electrostatic interaction between $-NH_{3}^{+}$ groups in chitosan. The apparent binding constant of $Cu^{2+}$ to D-glucosamine was estimated to be $1{\times}10^{4}$. For chitosan, no significant binding of $Cu^{2+}$ to the polymer was observed when pH < 5, but strong cooperative binding was observed near pH 5.1. The mechanism of such cooperativity was proposcd. Chitosan in solution exhibited typical polyelectrolytic behaviors: viscosity increases with increased amount of charged group, and decreases with addition of salt. The concentration dependence of viscosity was measured, and the Huggins parameters and intrinsic viscosity were calculated at various ionic strength. The results were interpreted in terms of molecular properties of the chitosan molecule.

Potentiometric Homogeneous Enzyme-Linked Binding Assays for Riboflavin and Riboflavin Binding Protein

  • 김진목;김혜진;김미정;이동주;한상현;차근식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1018-1022
    • /
    • 1996
  • Adenosine deaminase (ADA) has been utilized as the label in devising a potentiometric homogeneous assay for riboflavin and riboflavin binding protein (RBP). The proposed homogeneous assay method employs an ADA-biotin conjugate as the signal generator and an avidin-riboflavin conjugate as the signal modulator in the solution phase. The catalytic activity of the ADA-biotin conjugate is inhibited in the presence of an excess amount of the avidin-riboflavin conjugate, and the observed inhibition is reversed in an amount proportional to the concentration of RBP added. When the analyte riboflavin is added to this mixture of ADA-biotin, avidin-riboflavin and RBP, the activity of the enzyme conjugate is re-inhibited in an amount proportional to the concentration of riboflavin. Since the enzyme label used in this system is ADA, an ammonia-producing enzyme, a potentiometric rather than photometric detection scheme is used to monitor the enzymatic activity in the assay.

Synthesis and Ion Binding Properties of Rebek's Cleft-Type Ionophores Bearing Two Convergent Carboxylix Acid Functions

  • 김남이;박성우;장석규
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.519-522
    • /
    • 1997
  • A series of new ligands having convergent dicarboxylic acid functions, based-upon Rebek's cleft-type ionophore, have been prepared and their ion binding properties were investigated by the competitive extraction and transport experiments. The main purpose of the modification was to increase the lipophilicity of the Rebek's ionophore, which was attempted by utilizing propyl analog of Kemp's triacid or by changing the bridging unit. Ionophores 5 and 6 were found to have a pronounced ion-binding property toward Ca2+ ion. The selectivity in competitive extraction of ionophore 5 at pH 9 for Ca2+ over Mg2+ and Sr2+ is 2.0 and 59.3, respectively. The selectivity in competitive transport of ionophore 5 for Ca2+ over Mg2+ and Sr2+ is 29.8 and 99.3, and that of ionophore 6 is 10.0 and 23.2, respectively.

Alkali Metal Cation Selectivity of [$1_7$]Ketonand in Methanol: Free Energy Perturbation and Molecular Dynamics Simulation Studies

  • 황선구;장윤희;유진하;정두수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1129-1135
    • /
    • 1999
  • Free energy perturbation and molecular dynamics simulations were carried out to investigate the relative binding affinities of [17] ketonand (1) toward alkali metal cations in methanol. The binding affinities of 1 toward the alkali metal cations were calculated to be in the order Li+ > Na+ > K+ > Rb+ > Cs+, whereas our recent theoretically predicted and experimentally observed binding affinities for [18]starand (2) were in the order K+ > Rb+ > Cs+ > Na+ > Li+. The extremely different affinities of 1 and 2 toward smaller cations, Li + and Na+ , were explained in terms of the differences in their ability to change the conformation to accommodate cations of different sizes. The carbonyl groups constituting the central cavity of 1 can reorganize to form a cavity with the optimal M+ -O distance, even for the smallest Li+, without imposing serious strain on 1. The highest affinity of 1 for Li+ was predominantly due to the highest Coulombic attraction between the smallest Li+ and the carbonyl oxygens of 1.

Growth and Electronic Properties of Ag Overlayers on Stepped Pt(211) Surface

  • 김유권;김정원;김세훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1154-1157
    • /
    • 1996
  • The growth and electronic properties of ultrathin silver films deposited onto Pt(211) surface were studied using Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy. The AES and LEED results indicate that the silver grows by a layer by layer growth followed by three dimensional islands growth. The XPS results show that the Ag 3d core-level binding energy of Ag overlayers on Pt(211) shifts toward lower binding energy relative to the bulk value at lower Ag coverage. This negative binding energy shift of the Ag 3d core level is explained by the reduced coordination number of the overlayer atoms and the resulting initial state band narrowing effect suggested by Wertheim and Citrin [Phys. Rev. Lett. 1978, 41, 1425].

Electronic Structure of Oxygen in the Defective Nickel Monoxide

  • Lee, Gwang Sun;Gu, Hyeon Ju;Ham, Gyeong Hui;An, Un Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 1995
  • The band structure of nickel monoxide having a cation defect rock salt structure is calculated by means of the tight-binding extended Huckel method. The calculation is also made for the net charge, the DOS, the COOP, the electron density of the constituent atoms, and the O 1s binding energy shift when one of the adjacent nickel atoms is defected. It is found that the band gap near the Γ direction on the Brillouin zone is about 0.2 eV, and that all of the properties calculated including the electronic structure of the oxygen atom are more effectively affected by the surface defect than the inside one. The core O 1s binding energy shift is calculated by the use of valence potential method and the results are very satisfactory in comparison with the XPS experimental findings.

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

Preparation of Protein Adsorptive Anion Exchange Membrane Based on Porous Regenerated Cellulose Support for Membrane Chromatography Application (단백질 흡착성을 갖는 막 크로마토그래피용 재생 셀룰로오스 기반 음이온 교환 다공성 분리막의 제조)

  • Seo, Jeong-Hyeon;Lee, Hong-Tae;Kim, Tae-Kyung;Cho, Young-Hoon;Oh, Taek-Keun;Park, HoSik
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.348-356
    • /
    • 2022
  • With the development of the bio industry, membrane chromatography with a high adsorption efficiency is emerging to replace the existing column chromatography used in the downstream processes of pharmaceuticals, food, etc. In this study, through the deacetylation reaction of two commercial cellulose acetate (CA) membranes with different pore sizes, the porous regenerated cellulose (RC) supports for membrane chromatography were obtained to attach the anion exchange ligands. The adsorptive membranes for anion exchange were prepared by attaching an anion exchange ligand ([3-(methacryloylamino) propyl] trimethylammonium chloride) containing quaternary ammonium groups on the RC supports by grafting and UV polymerization. The protein adsorption capacities of the prepared membranes were obtained through both the static binding capacity (SBC) and the dynamic adsorption capacity (DBC) measurement. As a result, the membrane chromatography with the smaller the pore size, the larger the surface area showed the highest protein adsorption capacity. Membrane chromatography which was prepared by using deacetylated commercial CA support with MAPTAC ligand (i.e., RC 0.8 + MAPTAC: 43.69 mg/ml, RC 3.0 + MAPTAC: 36.33 mg/ml) showed a higher adsorption capacity compared to commercial membrane chromatography (28.38 mg/ml).

The Characteristic Self-assembly of Gold Nanoparticles over Indium Tin Oxide (ITO) Substrate

  • Li, Wan-Chao;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1133-1137
    • /
    • 2011
  • Ordered array of gold nanoparticles (Au NPs) over ITO glass was investigated in terms of ITO pretreatment, particle size, and diamines with different chain length. Owing to the indium-tin-oxide (ITO) layer coated on the glass, the substrate surface has a limited number of hydroxyl groups which can produce functionalized amine groups for Au binding, which resulted in the loosely-packed array of Au NPs on the ITO surface. Diamine ligand as a molecular linker was introduced to enhance the lateral binding of adjacent Au NPs immobilized on the amine-functionalized ITO glass, consequently leading to the densely-packed array of Au NPs over the ITO substrate. The molecular bridging effect was strengthened with the increase of chain length of diamines: C-12 > C-8. The packing density of small Au NPs (< 40 nm) was significantly increased with the increase of C-8 diamine, but large Au NPs (> 60 nm) did not produce densely-packed array on the ITO glass even for the dosage of C-12 diamine.

Selective Separations Using Molecularly Imprinted Membranes (분자 각인 막의 선택적 분리)

  • Lee, Jeong-Woo;Park, Joong-Kon
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.133-141
    • /
    • 2005
  • This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.