DOI QR코드

DOI QR Code

Alkali Metal Cation Selectivity of [$1_7$]Ketonand in Methanol: Free Energy Perturbation and Molecular Dynamics Simulation Studies

  • Published : 1999.10.20

Abstract

Free energy perturbation and molecular dynamics simulations were carried out to investigate the relative binding affinities of [17] ketonand (1) toward alkali metal cations in methanol. The binding affinities of 1 toward the alkali metal cations were calculated to be in the order Li+ > Na+ > K+ > Rb+ > Cs+, whereas our recent theoretically predicted and experimentally observed binding affinities for [18]starand (2) were in the order K+ > Rb+ > Cs+ > Na+ > Li+. The extremely different affinities of 1 and 2 toward smaller cations, Li + and Na+ , were explained in terms of the differences in their ability to change the conformation to accommodate cations of different sizes. The carbonyl groups constituting the central cavity of 1 can reorganize to form a cavity with the optimal M+ -O distance, even for the smallest Li+, without imposing serious strain on 1. The highest affinity of 1 for Li+ was predominantly due to the highest Coulombic attraction between the smallest Li+ and the carbonyl oxygens of 1.

Keywords

References

  1. Bioorganic Chemistry: A Chemical Approach to Enzyme Action(3rd ed.) Dugas, H.
  2. J. Am. Chem. Soc. v.111 Grootenhuis, P. D. J.;Kollman, P. A.
  3. J. Inclusion Phenom. Mol. Recognit. Chem. v.12 Eisenman, G.;Alvarez, O.;Aqvist, J.
  4. J. Org. Chem. v.60 Quici, S.;Manfredi, A.;Rainmondi, L.;Sironi, A.
  5. Coordination and Transport Properties of Macrocyclic Compounds in Solution v.76 Cox, B. G.;Schneider, H.
  6. Inclusion Phenomena and Molecular Recognition Biomimetic Ion Transport: Pores and Channel in Vesicle Membranes Carmichael, V. E.;Dutton, P. J.;Fyles, T. M.;James, T. D.;McKim, C.;Swan, J. A.;Zojaji, M.;Atwood, J. L.(ed.)
  7. J. Phys. Chem. v.98 Thompson, M. A.;Glendening, E. D.;Feller, D.
  8. Inclusion Phenomena and Molecular Rocognition Novel Chromogenic Ionophores for Determination of Sodium and Potassium in Biological Fluids: Synthesis and Applications Cram. D. J.;Chapoteau, E.;Czech, B. P.;Gebauer, C. R.;Helgeson, R. C.;Kumar, A.Atwood, J. L.(ed.)
  9. Synlett Lee, W. Y.
  10. J. Am. Chem. Soc. v.115 Lee, W. Y.;Park, C. H.;Kim, S.
  11. J. Org. Chem. v.59 Lee, W. Y.;Park, C. H.;Kim, H.-J.;Kim, S.
  12. J. Org. Chem. v.58 Lee, W. Y.;Park, C. H.
  13. Bull. Korean Chem. Soc. v.19 Hwang, S.;Ryu, G. H.;Lee, K. H.;Hong, J.-J.;Chung, D. S.
  14. Bull. Korean Chem. Soc. Hwang, S.;Ryu, G. H.;Jang, Y. H.;Chung, D. S.
  15. J. Am. Chem. Soc. v.118 Cho, S. J.;Hwang, H. S.;Park, J. M.;Oh, K. S.;Kim, K. S.
  16. J. Phys. Chem. A v.102 Cui, C.;Cho, S. J.;Kim, K. S.
  17. J. Org. Chem. Hwang, S.;Lee, K. H.;Ryu, G. H.;Jang, Y. H.;Lee, S. B.;Lee, W. Y.;Hong, J.-I.;Chung, D. S.
  18. Computational Approaches in Supramolecular Chemistry Complexation of Ions and Neural Molecules by Functionalized Calixalenes Ungaro, R.;Arduini, A.;Casnati, A.;Ori, O.;Pochini, A.;Ugozzoli, F.;Wipff, G.(ed.)
  19. J. Am. Chem. Soc. v.116 Bayly, C. I.;Kollman, P. A.
  20. Chem. Rev. v.93 Kollman, P.
  21. Eur. J. Biochem. v.204 van Gunsteren, W. F.;Mark, A. E.
  22. Protein Eng. v.2 van Gunsteren, W. F
  23. J. Am. Chem. Soc. v.113 Cummins, P. L.;Ramnarayan, K.;Singh, U. C.;Gready, J. E.
  24. J. Am. Chem. Soc. v.114 Miyamoto, S.;Kollman, P. A.
  25. J. Am. Chem. Soc. v.116 Burger, M. T.;Armstron, A.;Guarnieri, F.;McDonald, D. Q.;Still, W. C.
  26. J. Am. Chem. Soc. v.118 McDonald, D. Q.;Still, W. C.
  27. J. Phys. Chem. v.96 Aqvist, J.;Alvarez, O.;Eisenman, G.