• Title/Summary/Keyword: chemical balance study

Search Result 246, Processing Time 0.027 seconds

Nutritional Status and Requirements of Protein and Energy in Female Korean College Students Maintaining Their Usual Diet and Activity(1) : Energy Intake and Balance (자유로운 식이와 활동을 유지하는 한국 여대생의 에너지와 단백질 대사에 대한 연구(1) : 에너지 섭취와 평형)

  • 김주연
    • Journal of Nutrition and Health
    • /
    • v.27 no.4
    • /
    • pp.336-346
    • /
    • 1994
  • balance and to estimate daily energy requirement in 43 Korean female college students maintaining their usual diet and activity level. Energy intake and expenditure were measured in two separate periods about one month apart, each period lasting for 3 days. All the subjects participated in both periods. Energy intake was assessed by two methods ; weighed diet record and duplicate portion analysis of diet minus fecal and urinary excretion. Mean daily energy intake level calculated from diet records was 28.5 kcal/kgB.W(1, 476 kcal/day), and similar to the level of 27.8 kcal/kgB.W(1, 438 kcal/days) obtained from the chemical analysis of duplicate portions. Mean daily energy expenditure, calculated from activity records of each subject, was 34.6 kcal/kgB.W, or 1.39 times BMR, which corresponds to light activity level. Mean daily energy balance of subjects was -5.9 kcal/kgB.W. Mean daily requirement of energy, calculated from the activity records of the subjects, was 34.6 kcal/kgB.W, similar to the level of the Korean RDA for light activity level. The results of this study indicate that 1) the activity level of the study subjects corresponds to the sedentary level ; 2) present Korean RDA for energy for light activity is adequate for the subjects ; and 3) the subjects should increase their energy intake since they are largely in negative energy balance.

  • PDF

Source Apportionment and the Origin of Asian Dust Observed in Korea by Receptor Modelling (CMB) (수용모델(CMB)을 이용한 한반도에서 관측된 황사의 발원지 추정과 기여도에 대한 연구)

  • Shin S.A.;Han J.S.;Kim S.D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.157-166
    • /
    • 2006
  • Ambient TSP at four sites in Korea and soil samples from the source regions of Asian Dust in northern China were collected and analyzed for 15 metal components and 6 water-soluble ions to conduct a chemical mass balance (CMB). CMB receptor model was used to estimate the source contribution of TSP during the Asian Dust period, and the model results showed that China soil was the largest source contributor, accounting for 81% of TSP ($458.2{\mu}g/m^3$). Vehicle emission and geological sources contributed to about 8.8% and 4.4% of aerosol mass, followed by sea salt (1.5%) and secondary aerosol (2.9%). Fuel combustion and industrial process sources were found to be relatively minor contributors to TSP (${\leq}1%$). In addition to source contribution estimates, this study tried to identify the origin of Asian Dust observed in Korea. Among all 13 China soil profiles presented in this study, the most adoptable profile which can project the case well was selected and considered as the origin of the applied case.

Purity assignment of 17α-hydroxyprogesterone by mass balance method to establish traceability in measurement

  • Lee, Hwa Shim;Park, Su Jin
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.225-232
    • /
    • 2019
  • Traceability establishment in chemical measurements is a like a linkage established through an unbroken chain from the measured results to the international system (SI) of units. The primary process for traceability establishment is the purity assignment of a target material to be measured. In this study, we studied the purity assignment of 17α-hydroxyprogesterone (17-OHP). The presence of 17-OHP is indicative of congenital adrenal hyperplasia (CAH) and it builds up due to the deficiency of 21-hydroxylase and 11β-hydroxylase enzyme in the human blood. The purity assignment of 17-OHP was performed by the mass balance method, in which the impurities are categorized into four classes: total related structural impurities, water, residual organic solvents, and nonvolatiles/inorganics. The total related structural impurities were characterized by HPLC-UV; water content was determined by Karl-Fisher coulometer; and the total residual solvents and nonvolatiles/inorganics were determined by TGA. The purity of 17-OHP from a commercial manufacturer was calculated as 993.30 mg/g, and the expanded uncertainty was 0.58 mg/g. The proposed method was validated by uncertainty evaluation and comparing with the actual value of purity.

Water Balance and Nutrient Losses of Paddy Fields Irrigated from a Pumping Station (양수장지구 구획논 물수지와 영양염류 유출부하)

  • Choi, Jin-Kyu;Koo, Ja-Woong;Son, Jae-Gwon;Cho, Jae-Young;Yoon, Kwang-Sik;Han, Kuk-Heon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.394-398
    • /
    • 2001
  • The study was carried out to investigate the water balance and losses of nutrients from paddy fields during cropping period. The size of paddy fields was 95 ha and the fields were irrigated from a pumping station. The runoff loading was the highest in June because of the high concentrations of nutrients due to applied fertilizer. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 39.1 % to 42.5 % of nitrogen lost via runoff while runoff losses of phosphorus account for 6.3 % to 8.0 % of the total applied amount during cropping period. When the ratio was calculated between nutrients losses by infiltration and the applied of chemical fertilizer, two year results showed 9.1 % to 10.7 % for nitrogen and 0.2 % for phosphorus, respectively.

  • PDF

Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae (대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산)

  • Jang, Ji-Woong;Jung, Hwi-Min;Kim, Duck Gyun;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.237-241
    • /
    • 2017
  • Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.

New Test Methods of Retention and Drainage Using Multi-channel Turbidimeter and Balance Recorder

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.31-37
    • /
    • 2006
  • This study was performed to find effective measuring methods of retention and drainage by comparing traditional measuring methods of Britt jar, Canadian standard freeness tester methods and recently developed RDA-HSF with multi-channel turbidimeter method. At the result, Multi-channel turbidimeter method was useful to measure retention and efficiency of multiple chemical dosing system. A system CSF equipped with the balance recorder was also useful to obtain dynamic drainage information including initial drainage rate and final drainage amount. Therefore, we consider these new measuring systems would be helpful to advance retention and drainage technology.

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

Chemical Composition of Rainwater in Taean Area (태안지역 빗물의 화학적 특성)

  • Lee, Jong-Sik;Jung, Yee-Keun;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.204-208
    • /
    • 1999
  • This study was carried out to investigate the chemical properties of rainwater in Taean area. The rainwater way collected for six months from May to Octotber in 1998, and analyzed its chemical composition. The ion balance and electric conductivity balance showed confidence to chemical analyses of rainwater. Distribution rates of pH of rainwater in Taean area were 43% and 38% in the range of pH $4.5{\sim}5.0$ and $5.0{\sim}5.6$, respectively. Among the 1mm fraction for initial 5mm of rainfall, ion concentration of initial rainwater (less than 1mm of rain) was higher than those of the later terms. The major ions in rainwater were $NH_4\;^+$ and $Ca_2\;^+$ for cations, and $SO_4\;^{2-}$ and $NO_3\;^-$ for anions. The pH value of rainwater showed the lowest level of 4.3 in August. The ratio of non-sea salt $SO_4\;^{2-}$ to $NO_3\;^-$ was 2.4.

  • PDF

Process fault diagnostics using the integrated graph model

  • Yoon, Yeo-Hong;Nam, Dong-Soo;Jeong, Chang-Wook;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1705-1711
    • /
    • 1991
  • On-line fault detection and diagnosis has an increasing interest in a chemical process industry, especially for a process control and automation. The chemical process needs an intelligent operation-aided workstation which can do such tasks as process monitoring, fault detection, fault diagnosis and action guidance in semiautomatic mode. These tasks can increase the performance of a process operation and give merits in economics, safety and reliability. Aiming these tasks, series of researches have been done in our lab. Main results from these researches are building appropriate knowledge representation models and a diagnosis mechanism for fault detection and diagnosis in a chemical process. The knowledge representation schemes developed in our previous research, the symptom tree model and the fault-consequence digraph, showed the effectiveness and the usefulness in a real-time application, of the process diagnosis, especially in large and complex plants. However in our previous approach, the diagnosis speed is its demerit in spite of its merits of high resolution, mainly due to using two knowledge models complementarily. In our current study, new knowledge representation scheme is developed which integrates the previous two knowledge models, the symptom tree and the fault-consequence digraph, into one. This new model is constructed using a material balance, energy balance, momentum balance and equipment constraints. Controller related constraints are included in this new model, which possesses merits of the two previous models. This new integrated model will be tested and verified by the real-time application in a BTX process or a crude unit process. The reliability and flexibility will be greatly enhanced compared to the previous model in spite of the low diagnosis speed. Nexpert Object for the expert system shell and SUN4 workstation for the hardware platform are used. TCP/IP for a communication protocol and interfacing to a dynamic simulator, SPEEDUP, for a dynamic data generation are being studied.

  • PDF

Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models

  • Bae, Min-Suk;Schauer, James J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.219-236
    • /
    • 2009
  • Particle-phase organic tracers (molecular markers) have been shown to be an effective method to assess and quantify the impact of sources of carbonaceous aerosols. These molecular markers have been used in chemical mass balance (CMB) models to apportion primary sources of organic aerosols in regions where the major organic aerosol source categories have been identified. As in the case of all CMB models, all important sources of the tracer compounds must be included in a Molecular Marker CMB (MM-CMB) model or the MMCMB model can be subject to biases. To this end, the application of the MM-CMB models to locations where reasonably accurate emissions inventory of organic aerosols are not available, should be performed with extreme caution. Of great concern is the potential presence of industrial point sources that emit carbonaceous aerosols and have not been well characterized or inventoried. The current study demonstrates that emissions from industrial point sources in the St. Louis, Missouri area can greatly bias molecular marker CMB models if their emissions are not correctly addressed. At a sampling site in the greater St. Louis Area, carbonaceous aerosols from industrial point sources were found to be important source of carbonaceous aerosols during specific time periods in addition to common urban sources (i.e. mobile sources, wood burning, and road dust). Since source profiles for these industrial sources have not been properly characterized, method to identify time periods when point sources are impacting a sampling site, needs to avoid obtaining biases source apportionment results. The use of real time air pollution measurements, along with molecular marker measurements, as a screening tool to identify when point sources are impacting a receptor site is presented.