Browse > Article
http://dx.doi.org/10.9713/kcer.2017.55.2.237

Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae  

Jang, Ji-Woong (Department of Chemical and Biological Engineering, Korea University)
Jung, Hwi-Min (Department of Chemical and Biological Engineering, Korea University)
Kim, Duck Gyun (Department of Chemical and Biological Engineering, Korea University)
Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Korean Chemical Engineering Research / v.55, no.2, 2017 , pp. 237-241 More about this Journal
Abstract
Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.
Keywords
Metabolic engineering; Acetoin; 2,3-Butanediol dehydrogenase; NADH oxidase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xiao, Z., Ma, C., Xu, P. and Lu, J. R., "Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium," PloS. One, 4, e5627(2009).   DOI
2 Xiao, Z. and Lu. J. R., "Strategies for Enhancing Fermentative Production of Acetoin: a Review," Biotechnol. Adv., 32, 492-503 (2014).   DOI
3 Xu, H., Jia, S. R. and Liu, J. J., "Development of a Mutant Strain of Bacillus subtilis Showing Enhanced Production of Acetoin," Afr. J. Biotechnol., 10, 779-788(2011).
4 Sun, J. N., Zhang, L. Y., Rao, B., Han, Y. B., Chu, J., Zhu, J. W., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 using Statistical Optimization and a Two-stage Agitation Speed Control Strategy," Biotechnol. Bioprocess. Eng., 17, 598-605(2012).   DOI
5 Teixeira, R. M., Cavalheiro, D., Ninow, J. L. and Furigo, A., "Optimization of Acetoin Production by Hanseniaspora guilliermondii Using Experimental Design," Braz. J. Chem. Eng., 19, 181-186 (2002).   DOI
6 Zhang, L. Y., Chen, S., Xie, H. B., Tian, Y. T. and Hu, K. H., "Efficient Acetoin Production by Optimization of Medium Components and Oxygen Supply Control Using a Newly Isolated Paenibacillus polymyxa CS107," J. Chem. Technol. Biotechnol., 87, 1551-1557(2012).   DOI
7 Wang, D. X., Zhou, J. D., Chen, C., Wei, D., Shi, J. P., Jiang, B., Liu, P. F. and Hao, J., "R-Acetoin Accumulation and Dissimilation in Klebsiella pneumoniae," J. Ind. Microbiol. Biotechnol., 42, 1105-1115(2015).   DOI
8 Zhang, L. J., Liu, Q., Ge, Y., Li, L., Gao, C., Xu, P. and Ma, C., "Biotechnological Production of Acetoin, a Bio-based Platform Chemical, from a Lignocellulosic Resource by Metabolically Engineered Enterobacter cloacae," Green. Chem., 18, 1560-1570 (2016).   DOI
9 Jung, M. Y., Mazumdar, S., Shin, S. H., Yang, K. S., Lee, J. and Oh, M. K., "Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene," Appl. Environ. Microbiol., 80, 6195-6203(2014).   DOI
10 Shin, S. H., Kim, S., Kim, J. Y., Lee, S., Um, Y., Oh, M. K., Kim, Y. R., Lee, J. and Yang, K. S., "Complete Genome Sequencing of the 2,3-Butanediol-Producing Klebsiella pneumonia KCTC 2242," J. Bacteriol., 194, 2736-2737(2012).   DOI
11 Jun S. A., Kong S. W., Sang, B. I. and Um, Y., "Optimization of Culture Conditions for 1,3-propanediol Production from Glycerol Using Klebsiella pneumoniae," Korean Chem Eng Res., 47(6), 768-774(2009).
12 Ma, C., Wang, A., Qin, J., Li, L., Ai, X., Jiang, T., Tang, H. and Xu, P., "Enhanced 2,3-Butanediol Production by Klebsiella pneumoniae SDM," Appl. Microbiol. Biotechnol., 82, 49-57(2009).   DOI
13 Xiao, Z. J. and Xu, P., "Acetoin Metabolism in Bacteria," Crit. Rev. Microbiol., 33, 127-140(2007).   DOI
14 Jung, S. G., Jang, J. H., Kim, A. Y., Lim, M. C., Kim, B., Lee, J. and Kim, Y. R., "Removal of Pathogenic Factors from 2,3-Butanediol- Producing Klebsiella species by Inactivating Virulence-Related wabG gene," Appl. Microbiol. Biotechnol., 97, 1997-2007(2013).   DOI
15 Izquierdo, L., Coderch, N., Pique, N., Bedini, E., Corsaro, M. M., Merino, S., Fresno, S., Tomas, J. M. and Regue, M., "The Klebsiella pneumoniae wabG Gene: Role in Biosynthesis of the Core Lipopolysaccharide and Virulence," J. Bacteriol., 185, 7213-7221 (2003).   DOI
16 Wang, Y., Tao, F. and Xu, P., "Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae," J. Biol. Chem., 289, 6080-6090(2014).   DOI
17 Sun, J. A., Zhang, L. Y., Rao, Ben., Shen, Y. L. and Wei, D. Z., "Enhanced Acetoin Production by Serratia marcescens H32 with Expression of a Water-Forming NADH oxidase," Bioresour. Technol., 119, 94-98(2012).   DOI
18 Hsu, J. L., Peng, H. L. and Chang, H. Y., "The ATP-binding Motif in AcoK is Required for Regulation of Acetoin Catabolism in Klebsiella pneumoniae CG43," Biochem. Biophys. Res. Commun., 376, 121-127(2008).   DOI