• 제목/요약/키워드: chemical and mechanical properties

검색결과 2,248건 처리시간 0.034초

The morphology and mechanical properties of the blends of syndiotactic polystyrene and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers

  • O, Hyun-Tack;Kim, Hwang-Ryong;Kim, Jin-Kon;Park, Joon-Young
    • Korea-Australia Rheology Journal
    • /
    • 제13권2호
    • /
    • pp.83-87
    • /
    • 2001
  • The morphology and mechanical properties of the blends of a syndiotactic polystyrene (SPS) and poly-styrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers (SEBS) with various polystyrene block contents are studied. Mechanical properties, especially elongation at break and impact strength (IS), of the blend depend upon the morphology and interfacial adhesion, which in rum are affected by the viscosity ratio of constituent components and the styrene block content in SEBS. The IS of a blend was affected by the combined effect of rubber content and the interfacial adhesion. A maximum IS was found for a blend with the weight fraction of the PS block in an SEBS of 0.18. The IS of blends with smaller weight fractions of the PS block exhibited lower due to poor interfacial adhesion between SPS/SEBS in spite of a larger amount of rubber block. On the other hand, the IS of blends with larger weight fraction of the PS block becomes smaller due to lower amounts of rubber block in spite of better interfacial adhesion.

  • PDF

Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

  • Xu, Li Xiang;Sohn, Mi Hyun;Kim, Yu Soo;Jeong, Ye Rin;Cho, Ur Ryong
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.52-59
    • /
    • 2019
  • Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

Effect of Cross-Linking Characteristic on the Physical Properties and Storage Stability of Acrylic Rubber

  • Seong-Guk Bae;Min-Jun Gim;Woong Kim;Min-Keun Oh;Ju-Ho Yun;Jung-Soo Kim
    • Elastomers and Composites
    • /
    • 제58권3호
    • /
    • pp.136-141
    • /
    • 2023
  • Polyacrylic rubber (ACM) is well known for its excellent heat resistance and chemical stability. Additionally, its performance can be readily manipulated by modifying its functional groups, rendering it highly attractive to various industries. However, extreme climate changes have necessitated an expansion of the operating temperature range and lifespan of ACM products. This requires the optimization of both the compounding process and functional-group design. Hence, we investigated the relationship between the cross-linking system and mechanical properties of an ACM with a carboxylic cure site. The crosslink density is determined by chemical kinetics according to the structure of additives, such as diamine crosslinkers and guanidine accelerators. This interaction enables the manipulation of the scotch time and mechanical properties of the compound. This fundamental study on the correlation analysis between cross-linking systems, physical properties, and storage stability can provide a foundation for material research aimed at satisfying the increasingly demanding service conditions of rubber products.

Rheological and mechanical properties of ABS/PC blends

  • Khan M.M.K.;Liang R.F.;Gupta R.K.;Agarwal S.
    • Korea-Australia Rheology Journal
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and their alloys are an important class of engineering thermoplastics that are widely used for automotive industry, computer and equipment housings. For the process of recycling mixtures of ABS and PC, it is desirable to know how sensitive the blend properties are to changes in compositions. It was for this reason that blends of virgin ABS and virgin PC at five different compositions, namely, $15\%,\;30\%,\;50\%,\;70%$ and $85\%$ by weight of ABS were prepared and characterised by rheological and mechanical measurements. Rheological properties of these blends in steady, oscillatory and transient step shear and mechanical properties, namely, tensile strength, elongation-at-break and Izod impact strength are reported. The results show that PC behaves in a relatively Newtonian manner, but ABS exhibits significant shear thinning. The ABS-rich blends show a trend that is similar to that of ABS, while PC-rich blends, namely $0\%$ and $15\%$, exhibit a nearly Newtonian behaviour. However, at a fixed shear rate or frequency, the steady shear or the dynamic viscosity varied respectively in a non-mono-tonic manner with composition. Except for $15\%$ blend, the viscosities of other blends fall into a narrow band indicating a wide-operation window of varying blend ratio. The blends exhibited a lower viscosity than either of the two pure components. The other noticeable feature was that the blends at $70\%$ and $85\%$ ABS content had a higher G' than pure ABS, indicating an enhancement of elastic effect. The tensile yield strength of the blends followed the 'rule of mixtures' showing a decreasing value with the increase of ABS content in PC. However, the elongation-at-break and the impact strength did not appear to obey this 'rule of mixtures,' which suggests that morphology of the blends also plays a significant role in determining the properties. Indeed, scanning electron micrographs of the fracture surfaces of the different blends validate this hypothesis, and the $15\%$ blend is seen to have the most distinct morphology and correspondingly different behaviour and properties.

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet;Kim, Donghyuk;Hwang, Kiwon;Kim, Woong;Ryu, Gyeongchan;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.289-299
    • /
    • 2020
  • Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.

전자재료 표면의 무결함 연마를 위한 화학기계적 균형 (Chemical and Mechanical Balance in Polishing of Electronic Materials for Defect-Free Surfaces)

  • 정해도;이창석;김지윤
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.7-12
    • /
    • 2012
  • Chemical mechanical polishing(CMP) technology is faced with the challenge of processing new electronic materials. This paper focuses on the balance between chemical and mechanical reactions in the CMP process that is required to cope with a variety of electronic materials. The material properties were classified into the following categories: easy to abrade(ETA), difficult to abrade(DTA), easy to react(ETR) and difficult to react(DTR). The chemical and mechanical balance for the representative ETA-ETR, DTA-ETR, ETA-DTR and DTA-DTR materials was considered for defect-free surfaces. This paper suggests the suitable polishing methods and examples for each electronic material.

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • 접착 및 계면
    • /
    • 제25권1호
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.

간단한 화학적 합성을 통한 고성능 슈퍼캐패시터용 수산화 구리 전극 (Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors)

  • ;남민식;;전성찬
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.175-180
    • /
    • 2015
  • 본 연구에서는 간단한 화학적 합성 방법을 통하여 스테인레스 기판 위에 nano-bud 형태의 수산화 구리 박막을 형성하였다. 그리고 또 다른 합성 방법인 chemical bath deposition을 이용하여 수산화 구리 나노 구조를 간단하고 친환경적으로 형성하였다. 수산화 구리 박막의 구조적 연구는 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) 방법을 통하여 이루어졌으며 다결정의 nano-bud 형상을 확인할 수 있었다. 또한 나노 구조로 합성된 수산화구리 전극의 전기화학적 측정은 1M KOH의 전해질 조건에서 cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD)에서 측정되었으며 $340Fg^{-1}$의 높은 비 용량을 보였다. 또한 $1mA\;cm^{-2}$ 의 전력 밀도에서 ${\sim}83Wh\;kg^{-1}$의 높은 에너지 밀도와 ${\sim}3.1kW\;kg^{-1}$의 높은 출력 밀도를 가지며 향상된 전극의 성능을 보였다. 이러한 뛰어난 의사 캐패시터의 성능은 수산화 구리의 nano-bud 형상에 의한 효과로 확인할 수 있었다. 본 연구를 통하여 화학적 합성 방법의 확장을 통하여 수산화 구리 전극의 에너지 저장 장치로써의 성능을 확인할 수 있었다.

SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds

  • Kim, Wook-Soo;Lee, Dong-Hyun;Kim, Il-Jin;Son, Min-Jin;Kim, Won-Ho;Cho, Seong-Gyu
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.776-784
    • /
    • 2009
  • N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan $\delta$(at $0^{\circ}C$ and $60^{\circ}C$) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.

고분자-점토 나노복합체 이해와 향후 연구 방향 (Comprehending Polymer-Clay Nanocomposites and Their Future Works)

  • 최용석;정인재
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.23-36
    • /
    • 2008
  • 고분자-점토 나노복합체는 소량의 점토를 사용하여 큰 기계적 물성향상을 나타내 많은 관심을 끌고 있는 분야이다. 층상 구조를 갖고 있는 점토를 고분자 matrix에 분산하는 과정으로 요약할 수 있는 고분자-점토 나노복합체 제조는 친수성 점토 표면을 조절하는 기술, 점토의 물리적 성질을 이용하는 무기재료에 관한 지식, 고분자 합성, 고분자 유변학, 고분자 용액 거동, 기계적 물성이 복합적으로 작용하는 계이다. 이러한 복잡성을 설명하기 위해, 이 총설에서 점토 종류와 그 특성을 설명하였다. 또한 점토 특성과 고분자-점토 나노복합체 제조 방법의 연관성에 대해 설명하고, 제조된 복합체의 구조 분석과 방법에 대해 설명하였다. 그리고 복합체의 특징적인 물성을 분류한 후 그 물성과 복합체의 구조를 연관하여 살펴보았다. 마지막으로 최근의 연구 경향과 향후 연구 경향을 제시하였다.