• 제목/요약/키워드: chemical analysis

검색결과 12,584건 처리시간 0.038초

침전법과 ICP-AES법에 의한 철강 시료 중 Boron의 분석 (Determination of Boron in Steels by Precipitation Method and ICP-AES)

  • 임헌성;이석근
    • 분석과학
    • /
    • 제15권2호
    • /
    • pp.180-183
    • /
    • 2002
  • The new useful method for the direct determination of trace boron in iron matrix was studied by applying the precipitation of $Fe(OH)_3$ and ICP-AES. Optimum pH range was 11 ~ 12.5. Linear concentration range of boron was $0.01{\sim}1.0{\mu}g/m{\ell}$ in $5000 {\mu}g/m{\ell}$ solution as iron.

중·소 화학공장에 적합한 위험성 평가 기법 개발에 관한 연구 (A Study on Hazard Identification Method for Small and Medium Chemical Industries)

  • 이재민;유진환;고재욱
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.103-108
    • /
    • 2007
  • HAZOP 기법은 전문가의 경험과 지식을 기초로 브레인스토밍(brainstorming) 방식을 적용함으로써 체계적으로 잠재 위험을 분석, 평가하는 방법으로 검토 시 누락의 가능성을 배제하고 비교적 객관화된 평가서를 작성할 수 있는 장점으로 인하여 널리 이용되고 있다. 그러나 대규모 화학공장에서는 HAZOP 기법을 이용한 위험성 평가의 실시 및 그 결과의 활용이 잘 이루어지고 있으나, 중 소 화학공장들의 경우 기법 적용이 용이하지 못하여 현실적으로 많은 어려움을 겪고 있다. 이에 본 연구에서는 기존에 많이 사용되고 있는 위험성 평가 기법들의 장 단점을 분석 검토하여 중 소 화학공장의 현장에 적용하기 쉬운 위험성 평가 기법을 제시함으로써 사업장 위험 관리 수준의 향상에 기여하고자 하였다.

MALDI-MS-Based Quantitative Analysis of Bioactive Forms of Vitamin D in Biological Samples

  • Ahn, Da-Hee;Kim, Hee-jin;Kim, Seong-Min;Jo, Sung-Hyun;Jeong, Jae-Hyun;Kim, Yun-Gon
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.106-112
    • /
    • 2020
  • Analyzing vitamin D levels is important for monitoring health conditions because vitamin D deficiency is associated with various diseases such as rickets, osteomalacia, cardiovascular disorders and some cancers. However, vitamin D concentration in the blood is very low with optimal level of 75 nmol/L, making quantitative analysis difficult. The objective of this study was to develop a highly sensitive analysis method for vitamin D using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). 25-hydroxyvitamin D (25(OH)D), which has been used as an indicator of vitamin D metabolites in human biofluids was chemically derivatized using a secosteroid signal enhancing tag (SecoSET) with powerful dienophile and permanent positive charge. The SecoSET-derivatized 25(OH)D provided good linearity (R2 > 0.99) and sensitivity (limit of quantitation: 11.3 fmol). Chemical derivatization of deuterated 25-hydroxyvitamin D3 (d6-25(OH)D3) with SecoSET enabled absolute quantitative analysis using MALDI-MS. The highly sensitive method could be successfully applied into monitoring of quantitative changes of bioactive vitamin D metabolites after treatment with ketoconazole to inhibit 1α-hydroxylase reaction related to vitamin D metabolism in human breast cancer cells. Taken together, we developed a MALDI-MS-based platform that could quantitatively analyze vitamin D metabolites from cell products, blood and other biofluids. This platform may be applied to monitor various diseases associated with vitamin D deficiency such as rickets, osteomalacia and breast cancer.

Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties

  • Li, Shifeng;Shen, Yanming;Liu, Dongbin;Fan, Lihui;Wu, Keke
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.392-396
    • /
    • 2014
  • New organic-inorganic composite of 2,4-dihydroxybenzophenone (BP-1) encapsulation into dodecylbenzenesulfonate (DBS) modified layered double hydroxide (LDH) was successfully prepared. The surface, structural, thermal and absorption properties of the BP-1/DBS-LDH nanohybrid was characterized by BET analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG) and diffuse reflectance UV-Vis absorbance spectra (DRUV-vis). The interlayer configuration of composite and the adsorption mechanism of BP-1 on MgAl-DBS-LDH were discussed. It was suspected that DBS anions located in the form of monolayer arrangement with a $75^{\circ}$ anti parallel angle between dodecylbenzenesulfonate chain axis. The diffuse reflectance UV-Vis absorbance results revealed that the UV absorbing wavelength of BP-1/DBS-LDH evidently extends to about 400 nm, which shows that the BP-1/DBS-LDH has the potential application as a UV absorber.

Optimization of compression ratio in closed-loop CO2 liquefaction process

  • Park, Taekyoon;Kwak, Hyungyeol;Kim, Yeonsoo;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2150-2156
    • /
    • 2018
  • We suggest a systematic method for obtaining the optimal compression ratio in the multi-stage closed-loop compression process of carbon dioxide. Instead of adopting the compression ratio of 3 to 4 by convention, we propose a novel approach based on mathematical analysis and simulation. The mathematical analysis prescribes that the geometric mean is a better initial value than the existing empirical value in identifying the optimal compression ratio. In addition, the optimization problem considers the initial installation cost as well as the energy required for the operation. We find that it is best to use the fifth stage in the general closed-loop type carbon dioxide multi-stage compression process.

화학공정에 있어서의 대규모공정 해석방법 (A study on the techniques of large scale chemical process system analysis)

  • 조인호;문장호;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.560-565
    • /
    • 1986
  • For the control of chemical process, optimal value of the process should be known at first. And process simulation is the previous step of optimal value calculation. However it is not a simple work to analyze chemical process system. Especially for the large scale chemical process system, many difficulties such as non-linearity and complexity caused by recycle streams should be overcome. In this paper, three strategies of large scale chemical process analysis were explained and discussed with case studies.

  • PDF

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

로지스틱회귀분석 모델을 활용한 화학사고 사상사고 예측모형 개발 연구 (A Study on Accident Prediction Models for Chemical Accidents Using the Logistic Regression Analysis Model)

  • 이태형;박춘화;박효현;곽대훈
    • 한국화재소방학회논문지
    • /
    • 제33권6호
    • /
    • pp.72-79
    • /
    • 2019
  • 본 연구를 통해 화학사고 사상사고 예측모형을 개발하였다. 모형은 로지스틱회귀분석 모델을 활용하여 사상사고에 영향을 주는 변수를 도출하여 적용하였고, 통계적 검증방법과 오즈비를 활용하여 모형의 신뢰성 및 정확성을 검증하였다. 모형에 활용한 사고 자료는 과거 발생했던 화학사고 통계를 분석하여 활용하였으며, 사고의 유형, 원인, 발생 장소, 사상자 현황 및 사상자를 발생시킨 화학사고 등의 자료 분석을 통해 통계적으로 유의하게 나타난 독립변수(p < 0.05)를 적용하였다. 본 연구에서 개발한 모형은 사업장에서 화학사고로 인해 발생하는 사상사고의 예방 및 안전시스템 구축을 위한 연구로서 의의가 있다고 할 수 있다. 모형에 의한 분석결과 사상사고 발생에 가장 크게 영향을 미치는 변수는 폭발에 의한 화학사고인 것으로 조사되었다. 따라서 사업장에서 발생하는 폭발 유형의 화학사고를 예방하기 위한 대책마련이 시급하다고 판단된다.