• 제목/요약/키워드: chemical analysis

Search Result 12,584, Processing Time 0.038 seconds

HPLC를 이용한 길경(桔梗) 사포닌 분석법(分析法) (HPLC Analysis of Saponins in Platycodi Radix)

  • 김현기;최재석;유대석;최연희;연규환;홍경식;이병회;김혜진;김은주;박병근;정영철;김영섭;유시용
    • 생약학회지
    • /
    • 제38권2호통권149호
    • /
    • pp.192-196
    • /
    • 2007
  • A rapid and practical HPLC assay was developed for quantitative analysis of saponins in Platycodi Radix. Seven saponin components in Platycodi Radix, i.e., deapioplatycoside E, platycoside E, deapioplatycodin D$_3$, platycodin D$_3$, polygalacin D$_2$, platycodin D$_2$ and platycodin D were successfully resolved on C18 column and detected by ELSD. Standard curves were linear over the concentration range 1 ${\sim}$2,000 ${\mu}$g/ml (r$^2$>0.992). Intra- and inter-day coefficients for variation of seven saponin components were < 10% and limit of quantification of them were around 0.7${\sim}$1.5 ${\mu}$g/ml, respectively. Using this method, contents of seven saponins in various plant materials under different cultivating conditions were estimated.

Application of a Gas Chromatography/Mass Spectrometric Method for the Determination of Butyltin Compounds in Sediment

  • Won, Yong-Il;Jung, Pyong-Gil;Chung, Min-Young;Kim, Byung-Joo;Yim, Yong-Heon;So, Hun-Young;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1508-1512
    • /
    • 2004
  • A gas chromatography/mass spectrometric (GC/MS) method has been developed for the determination of trace mono-n-butyltin (MBT), di-n-butyltin (DBT), and tri-n-butyltin (TBT) compounds in sediments. Samples were extracted by 10% acetic acid in methanol containing 0.03% tropolone and were then derivatized for GC/MS analysis. Ethylation by sodium tetraethylborate and phenylation by sodium tetraphenylborate were evaluated as a derivatization reaction of the organotins in sample extract. n-Hexane was added into reaction media in the beginning of the reaction for the continuous extraction of derivatized organotins. Ethylation requires less than 2 hours to get proper derivatization yields for MBT, DBT, and TBT altogether and produces relatively low amounts of side reaction products. Compared to ethylation, phenylation requires much longer time but provides relatively lower yield and produces considerable amounts of side reaction products. Therefore, the ethylation reaction was applied for the analysis of organotin compounds in sediment. An isotope dilution mass spectrometric (IDMS) method based on GC/MS has been applied to the accurate determination of DBT compounds in the sediments. The IDMS results from the analyses of sediment samples showed a reasonable repeatability and a good agreement with the values obtained by IDMS based on liquid chromatography/induced coupled plasma/mass spectrometry.

Preparation of Bi/Bi2MoO6 Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation

  • Zou, Chentao;Yang, Zhiyuan;Liang, Mengjun;He, Yunpeng;Yang, Yun;Yang, Shuijin
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850127.1-1850127.13
    • /
    • 2018
  • Bi metal deposited on $Bi_2MoO_6$ composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using $NaBH_4$ as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of $Bi/Bi_2MoO_6$ composite to RhB is 10.8 times that of $Bi_2MoO_6$, and the degradation rate constant of BPA is 6.9 times of that of $Bi_2MoO_6$. Nitrogen absorption-desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of $Bi/Bi_2MoO_6$ composites. The higher charge transfer efficiency of $Bi/Bi_2MoO_6$ is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.

The Effect of Electron Beam Irradiation on Chemical and Morphological Properties of Hansan Ramie Fibers

  • Lee, Jung Soon
    • 한국의류산업학회지
    • /
    • 제15권3호
    • /
    • pp.430-436
    • /
    • 2013
  • The purpose of this study investigates the effects of electron beam(EB) irradiation on the chemical and morphological properties of Hansan ramie fiber. Hansan ramie fibers were irradiated with electron beam doses of 0, 1, 3, 5 and 10kGy. The effect of electron beam irradiation on the chemical components of fibers as well as the surface chemical and morphological properties were investigated using chemical component analysis methods based on TAPPI standards, XPS, and SEM. The results indicate that the surface layers can be removed under suitable EB irradiation doses. Alcohol-benzene extraction and lignin content increases gradually with an increase in EB irradiation and reaching a maximum at an EB dose of 3kGy, and decreases at 10kGy. The surface chemical changes measured by XPS corresponded to the chemical composition analysis results. The C1 peak and the O/C ratio decreased with the removal of the multi-layer and primary layer by EB irradiation. The SEM images show the inter-fibrillar structure etched by EB irradiation up to 5kGy. At 10kGy, the surface structure of the ramie fiber shows highly aligned and distinctive striations in a longitudinal direction. The removal of these exterior layers of the fiber was confirmed by changes in surface morphology as observed in SEM images.

Effects of External Current Constraint on the Belousov-Zhabotinskii System Measured by a Pt Electrode

  • Wei, Guoying;Jin, Yongdong;Ge, Hongliang;Luo, Jiuli
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.543-547
    • /
    • 2005
  • The Belousov-Zhabotinskii system measured by a Pt electrode is investigated under external electrode current constraint. A dynamical analysis of the electrode reaction phase has been made by means of a linearized stability criterion valid for three-variable system. It turns out that limit cycle oscillatory regime and dynamical behaviors of the electrode reaction phase have been degenerated under periodical electrode current.

A Study on the Structural Controllability of Chemical Processes Based on Relative Order Analysis

  • Lee, Byungwoo;Kim, Yoonsik;Chang, Tae-Suk;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.53-56
    • /
    • 1999
  • The control performance of a chemical process is determined by process structure as well as the performance of controllers. Therefore, the concept of“controllability”should be introduced in the early design stage. Structural information makes controllability assessment possible by giving insights on the pathways of disturbances in the process. In this study, a simple procedure to evaluate controllability is suggested to screen out design alternatives using relative order analysis and structural decomposition. The effectiveness of the proposed method was validated by comparing the results with the case of dynamical simulation.

  • PDF

재생골재 콘크리트의 화학안정성에 관한 실험적 연구 (An Experimental Study on the Chemical Soundness of Recycled Aggregate Concrete)

  • 김무한;김규용;박선규;이정율
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.13-20
    • /
    • 1999
  • Recently, the study for practical construction application no recycled aggregate concrete is actively being proceeded, on the purpose of technical development for recycling on the construction waste concrete occurred at the time of destruction of building construction by the rapid increase of building wastes and exhaustion of natural aggregates. But, the durability of investigation with all sorts of fluidity and engineering property for application recycled aggregate concrete to practical construction must be done at the same time. Especially, because of the real condition for chemical attack of concrete construction by the acid rain, acidification of soil, deepening of air pollution and dirty water etc. being come to the fore a serious problem, the study on the chemical soundness of concrete durability must be accompanied. This study is composed as: I series: Analysis for chemical soundness of aggregates. II series: Analysis for chemical soundness of natural and recycled aggregate concrete against $Na_2$$SO_4$ solution in drying and wet curing condition ($at20~80^{\circ}C$).

Characterization of In-Situ Film Thickness and Chamber Condition of Low-K PECVD Process with Impedance Analysis

  • Kim, Dae Kyoung;Jang, Hae-Gyu;Kim, Yong-Tae;Kim, Hoon-Bae;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.461-461
    • /
    • 2010
  • For a low dielectric constant inter-metal dielectric application, the low-k SiCOH film with a dielectric constant of 2.8-3.2 has been deposited by plasma-enhanced chemical vapor deposition with decamethylcyclopentasiloxane, cyclohexane, and helium which is carrier gas. In this work, we investigated chemical deposition rate, dielectric constant, characterization of plasma polymer films according to temperature(25C-200C) of substrate and change of component concentration. We measured impedance by using V-I prove during process. From experimental result, deposition rate decrease with increasing temperature. Through real time impedance analysis of chamber, we find corelation between film thickness and impedance by assuming equivalent circuit.

  • PDF

Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju

  • Ban, Jae-Doo;Moon, Seong-Woo;Lee, Seong-Won;Lee, Joo-Gong;Seo, Yong-Seok
    • 지질공학
    • /
    • 제27권4호
    • /
    • pp.451-462
    • /
    • 2017
  • Physical weathering caused by external forces and chemical weathering caused by the decomposition or alteration of constituent materials are the two factors that dominate the mechanical properties of rocks. In this study, a field investigation was undertaken to identify the physical and chemical weathering characteristics of the biotite granite and granitic weathered soils in Gyeongju, South Korea. Samples were collected according to their grade of weathering and subjected to modal analysis, XRD analysis, XRF analysis, physical property tests, particle size distribution tests, and slake durability tests. Modal and XRD analysis identified these rocks as biotite granite; secondary alteration minerals were not observed. Physical property tests and particle size distribution analyses indicate an average porosity of 41.28% and a sand content of > 90 wt.%. These values are somewhat higher than those of granites in general. The results of the slake durability test and XRF analyses show that the physical and chemical weathering indices of the samples vary with the degree of weathering.