Browse > Article
http://dx.doi.org/10.5805/SFTI.2013.15.3.430

The Effect of Electron Beam Irradiation on Chemical and Morphological Properties of Hansan Ramie Fibers  

Lee, Jung Soon (Dept. of Clothing and Textiles, Chungnam National University)
Publication Information
Fashion & Textile Research Journal / v.15, no.3, 2013 , pp. 430-436 More about this Journal
Abstract
The purpose of this study investigates the effects of electron beam(EB) irradiation on the chemical and morphological properties of Hansan ramie fiber. Hansan ramie fibers were irradiated with electron beam doses of 0, 1, 3, 5 and 10kGy. The effect of electron beam irradiation on the chemical components of fibers as well as the surface chemical and morphological properties were investigated using chemical component analysis methods based on TAPPI standards, XPS, and SEM. The results indicate that the surface layers can be removed under suitable EB irradiation doses. Alcohol-benzene extraction and lignin content increases gradually with an increase in EB irradiation and reaching a maximum at an EB dose of 3kGy, and decreases at 10kGy. The surface chemical changes measured by XPS corresponded to the chemical composition analysis results. The C1 peak and the O/C ratio decreased with the removal of the multi-layer and primary layer by EB irradiation. The SEM images show the inter-fibrillar structure etched by EB irradiation up to 5kGy. At 10kGy, the surface structure of the ramie fiber shows highly aligned and distinctive striations in a longitudinal direction. The removal of these exterior layers of the fiber was confirmed by changes in surface morphology as observed in SEM images.
Keywords
electron beam irradiation; Hansan ramie; chemical composition; surface chemical property; morphological property;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aranberri-Askargorta, I., Lampke, T., & Bismarck, A. (2003). Wetting behavior of flax fibers as reinforcement for polypropylene. Journal of Colloid and Interface Science, 263(2), 580-589.   DOI   ScienceOn
2 Belgacem, M. N., Czeremuszkin, G., Sapleha, S., & Gandini, A. (1995). Surface characterization of cellulose fibers by XPS and inverse gas chromatography. Cellulose, 2(3), 145-157.   DOI
3 Choi, H. Y., Han, S. O., & Lee, J. S. (2009). The effects of surface and pore characteristics of natural fiber on interfacial adhesion of henequen fiber/PP biocomposites. Composite Interfaces, 16(4), 359-376.   DOI   ScienceOn
4 Choi, H. Y., Han, S. O., & Lee, J. S. (2008). Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers. Applied Surface Science, 255, 2466-2473.   DOI   ScienceOn
5 Halina, K., & Dagmara, O. (2006). The effect of UV-irradiation on composting of polyethylene modified by cellulose. Polymer Degraddation and Stability, 91(10), 2282-2291.   DOI   ScienceOn
6 Halina, K., Dagmara, O., Przemystaw, M., & Hanna, C. (2005). Effect of short wavelength UV-irradiation on ageing of polypropylene/ cellulosic compositions. Polymer Degradation and Stability, 88(2), 189-198.   DOI   ScienceOn
7 Hong, J. M., & Ryu, H. S. (1997). Mechanical properties and fabric handle of Hansan ramie(Part 1). Journal of the Korean Society of Clothing and Textiles, 21(8), 1315-1322.
8 Han, S. O., Seo, Y. B., & Lee, C. H. (2007). Degradation of cellulosic fibers by electron beam irradiation. Journal of Korea Technical Association of the Pulp and Paper Industry, 39(5), 20-25.
9 Han, S. O., Cho, D., Park, W. H., & Lawrence, D. (2006). Henequen/ poly(butylen-es succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Composite interfaces, 13(2), 231-247.   DOI   ScienceOn
10 Iller, E., Kykielka, A., Stupinska, H., & Mikolajczyk, W. (2002). Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiation Physics and Chemistry, 63(3), 253-257.   DOI   ScienceOn
11 Johansson, L. (2002). Monitoring fibre surfaces with XPS in papermaking processe. Microchimica Acta, 138(3-4), 217-223.   DOI
12 Johansson, L. S., Campbell, J. M., Krista, K., & Per, S. (1999). Evaluation of surface lignin on cellulose fibers with XPS. Applied Surface Science, 144-145, 92-95.   DOI   ScienceOn
13 Juan, C. B., Richard, V., Joel, P., Richard, G., Stefan, Z., & Jogn, F. K. (2005). Chemical force microscopy of cellulosic fiber. Carbohydrate Polymers, 62(4), 369-378.   DOI   ScienceOn
14 Khan, M. A., Haque, N., Al-Kafi, A., Alam, M. N., & Abedin, M. Z. (2006). Jute reinforced polymer composite by gamma radiation: effect of surface treatment with UV radiation. Polymer Plastics Technology and Engineering, 45(5), 607-613.   DOI   ScienceOn
15 Klemm, D., Philips, B., Heinze, T., Hinze, U., & Wagenknecht, W. (1998). Fundamentals and Analytical Methods, Volume 1, Comprehensive cellulose chemistry(1st ed). New York: Wiley-VCH.
16 Koljonen, K., Osterberg, M., Johansson, L. S., & Stenius, P. (2003). Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 228(1/3), 143-158.   DOI   ScienceOn
17 Lee, S. G., Choi, S. S., Park, W. G., & Cho, D. (2003). Characterization of surface modified flax fibers and their biocompoistes with PHB. Macromolecular Symposia, 197(1), 89-99.   DOI   ScienceOn
18 Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibers, biodegradable polymers and biocomposite; An overview. Macromolecular Materials and Engineering, 276/277(1), 1-24.   DOI   ScienceOn
19 Nevell, T. P., & Zeronian, S. H. (1985). Cellulose chemistry and its applications (First ed.). New York: John Wiley & Sons.
20 Na, Y. J., & Kim, H. W. (2012). Sensibility preference of eco-friendly fabric products and trust reliability. Journal of the Korean Society for Clothing Industry, 14(3), 430-437.   과학기술학회마을   DOI   ScienceOn
21 Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Chung, Y. S., Park, W. H., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of Xray diffraction and FT-IR spectroscopy. Carbohydrate Research, 340(15), 2376-2391.   DOI   ScienceOn
22 Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites: Part A., 39(10), 1632-1637.   DOI   ScienceOn
23 Takacs, E., Wojnarovits, L., Borsa, J., Foldvary, C., Hargittai, P., & Zold, O. (1999). Effect of a-irradiation on cotton-cellulose. Radiation Physics and Chemistry, 55(5/6), 663-666.   DOI   ScienceOn
24 Laine, J., Stenius, P., Carlsson, G., & Ström, G. (1994). Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose, 1(2), 145-160.   DOI
25 Yuan, X., Jayaraman, K., & Bhattacharyya, D. (2004). Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composite. Journal of Adhesion Science and Technology, 18(9), 1027-1045.   DOI   ScienceOn